
i •

III

NASA-CR-I99729

ANNUAL STATUS REPORT

•Error Control Techniques for Satellite and

Space Communications

NASA Grant Number NAG5-557

Principal Investigator:

Daniel J. Costello, Jr.

December 1995

(NASA-CR-199729) ERROR CONTROL N96-14485

TECHNIQUES FOR SATELLITE ANO SPACE

COMMUNICATIONS Annual Report
(Notre Dame Univ.) 132 p Unclas

G3/32 0077074

Department of

ELECTRICALENGINEERING

/>_/ / '::>_.-,p,:
y/,J) ..

.<5:.<'_"_?,._

UNIVERSITYOF NOTRE DAME, NOTRE DAME, INDIANA

Summary of Progress

In this report, we will focus on the results obtained during the PI's recent sabbatical leave

at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, from Januar7 1,

1995 through June 30, 1995. During this time period the PI and his postdoctoral research

associate, Dr. Lance C. Perez, supervised one semester project and one diploma project

involving three ETH students: Dieter Arnold, Guido Meyerhans, and Jan Seghers. Both

projects investigated various properties of TURBO codes, a new form of concatenated coding

that achieves near channel capacity performance at moderate bit error rates. The semester

project, entitled "The Realization of the Turbo-Coding System" and authored by Mr. Arnold

and Mr. Meyerhans, involved a thorough simulation study of the performance of TURBO

codes and verified the results claimed by previous authors. A copy of the final report for

this project is included as Appendix A to this report. The diploma project, entitled "_On the

Free Distance of Turbo Codes and Related Product Codes" and authored by Mr. Seghers,

includes an analysis of TURBO codes and an explanation for their remarkable performance.

A copy of the final report for this project is included as Appendix B to this report. Recently,

the PI presented a paper on this research at the 1995 Allerton Conference [8]. As a result of

this presentation, we have been invited to submit a paper on TURBO codes to the special
issue of the IEEE Transactions on Information Theory on "Codes and Complexity" scheduled

for publication in November 1996. The following sections contain a brief summary of this

research.

1 Introduction

The discovery of TURBO codes and the near capacity performance reported by .the

discoverers [1] has stimulated significant research effort to fully understand this new

coding scheme [21-[6 I. In this paper, the performance of TURBO codes is explained in

terms of the code's distance spectrum. These results explain both the near capacity

performance of the TUlq.BO codes and the observed "error floor" for moderate and high

signal-to-noise ratios (SNl:t's).

2 Performance Bounds

In order to make clear the distinction between TURBO codes and convolutional codes,

it is useful to consider these codes as block codes. To this end, the inputs sequences are

restricted to sequences of length N, where N corresponds to the size of the interleaver

in the TURBO encoder. With finite length input sequences of length N, a (2, 1, v)

convolutional code may be viewed as a block code with 2 N codewords of length 2(v + N).

The bit error rate (BElt) performance of the convolutional code with maximum like-

lihood (ML) decoding is upper bounded by

2_' wi I REb

where wi and di are the information weight and total Hamming weight, respectively, of

the { th codeword. Collecting codewords of the same total Hamming weight and defining

the average information weight per codeword as

Wd

where wd is the total information weight of all codewords of weight d and N_ is the

number of codewords of weight d, yields

P_<
d=d[_ee

N \V-No]"

If a convolutionaJ code has N ° codewords of weight d caused by an information se-

quence x(D) whose first one occurs at time 0, then it also has a codeword of weight d

caused by the information sequence Dx(D), a codeword of weight d caused by the infor-

mation sequence D2x(D), and so on. Thus, as the length of the information sequences

increases we have

lim Nd
N_oo "_" = N_

and
wd w°

lim _d - -- =
N-++ Nd N 0

and the bound on the BElt of a convolutionalcode with ML decoding becomes

Pb < _ zv° - REb

d-=d f r_e

which is the standard union bound for ML decoding. For this reason, most efforts to find

good convolutional codes have focused on finding codes that maximize the free distance

dlree and minimize the multiplicity Na for a given rate and constraint length.

The performance of the TURBO code with ML decoding is also bounded by

<

where wi and d_ are the information weight and total Hamming weight, respectively, of

the i _ codeword. However, in the TURBO encoder the pseudorandom interleaver maps

the sequence x(D) to x'(D) and the sequence Dx(D) to a sequence x#(D) that is different

from Dz'(D) with very high probability. Thus, the input sequences x(D) and Dx(D)

produce different codewords with different Hamming weights.

Collecting codewords of the same total Hamming weight, the bound on the BER for

TURBO codes becomes

d=d f r.e

For TURBO codes with pseudorandom interleavers, Nd_a is much less than N and

_dNd
lim _ << 1,

N--+oo Y

where _aNa

N

is called the effective multiplicity of codewords of weight d.

3 Asymptotic Performance

In this section, the performance of TURBO codes for high SNR's is addressed using the

bounds developed in the previous section. In order to make the points more concrete,

the performance of the TURBO code is compared to the performance of a maximum free

distance (MFD) (2, 1, 14) convolutional code using simulations and analytical results.

Figure 1 shows simulation results for the (2, 1, 14) code with soft-decision Viterbi decoding

and the TURBO code of [ll with iterative decoding and N --- 65536.

It is well known that for high SNR's, the performance of a convolutional code with

ML decoding is determined by the free distance asymptote. That is, for high SNR's the

first term of the union bound is dominant. For the MFD (2, 1,14) code the first term in

the bound is given by

_U free __ ¢- REb

"_ C_Jc free ,

where dfree = 18, N_fre e = 18, and W/tee0 = 137. In Figure 2, simulation results for this

code are shown along with the free distance asymptote and it is clear that as the SNR

gets large the asymptote accurately predicts the performance of the code.

For the TURBO code, the first term in the union bound is given by

N

where N is the size of the interleaver. For N = 65536, is has been found [7] that the

TURBO code has Nlr_ = 3 and _ = 2. (This may vary slightly depending on which

pseudorandom interleaver is used.) In Figure 3, the free distance asymptote is plotted

together with simulation results. Once again, the asymptote is seen to be a good estimate

of the performance of the code for high SNR's. Thus, it can be concluded that the 'error

floor' of TURBO codes is due to their relatively low free distance and the corresponding

free distance asymptote.

It can be shown [7] that as the interleaver size N increases, the number of free distance

codewords approaches a constant Kfree that is much less than N. That is,

lim NIr.e= glreo-
N_

(This is not true for rectangular interleavers!) Thus, the 'error floor' can be lowered by

increasing the size of the interleaver. Simulation results have shown that this is indeed

the case.

4 Performance at Low SNR's

Having demonstrated that TURBO codes have a relatively small free distance, their

excellent performance at low SNR's may seem even more surprising. In this section,

the performance of TURBO codes at low SNR's is explained by examining the code's

distance spectrum.

Returning to the MFD (2, 1, 14) convolutional code and Figure 2, it is clear that for

low and moderate SNR's there is a significant gap between the free distance asymptote

and the simulated performance. That is, the real coding gain is less than the asymptotic

coding gain. The (2, 1, 14) code has the following distance spectrum

d w°
18 33 187

20 136 1034

22 835 7857

24 4787 53994

26 27941 361762

28 162513 2374453

30 945570 15452996

32 5523544 99659236

where N ° is the number of paths of weight d and w ° is the total information weight. In

Figure 4, the contribution of each term in the distance spectrum to the overall perfor-

mance of the code is plotted and compared to simulation results. It is easily seen that

for SNR's less than 2.5 dB the free distance asymptote is the dominant term in the per-

formance. This is due to the rapid growth of the multiplicities in the distance spectrum

which causes the high weight paths to become dominant for low and moderate SNR's.

In view of the analysis of the (2, 1, 14) code, it is reasonable to suggest that the excel-

lent performance of the TURBO code at low and moderate SNR's is due to a relatively

"thin" distance spectrum. That is, the TURBO code is able to follow the free distance

asymptote at lower SNR's because the multiplicities of higher weight codewords are small

enough that the free distance asymptote remains the dominant term in the bound. The

distance spectrum of TURBO codes is the result of a process called "spectral thinning"

in which the interteaver effectively moves many lower weight codewords to higher weight

codewords. This theory is supported by simulation results and actual calculations of the

distance spectrum of some simple TURBO codes [7I.

In Figure 5, simulation results are shown along with the contributions to the union

bound of the first five terms of the distance spectrum of the TURBO code. (The distance

spectrum of the TURBO was calculated assuming only information sequences of weight

two.) Note that the free distance asymptote remains the dominant term in the bound
even for low SNR's. Thus, the excellent performance of TURBO codes at low SNR's is

a result of their relatively thin distance spectrum which enables the code to follow the

free distance asymptote for low and moderate SNR's.

5 Primitive TURBO Codes

For sufficiently large interleavers, it can be shown that the first several terms of the dis-

tance spectrum are determined solely by information sequences of weight 2 [7]. As the

size of the interleaver increases, the number of terms in the distance spectrum determined

solely by weight 2 information sequences increases. Consequently, for a given interleaver

size, the performance of TURBO codes can be improved by choosing the feedback poly-

nomial in the encoder such that weight 2 information sequences generate high weight

codewords.

Using primitive polynomials as the feedback polynomial in the encoder causes weight

2 information sequences to generate high weight codewords, thereby increasing the free

distance of the TURBO code for larger interleaver sizes and improving the performance

at moderate to high SNR's. Figure 6 shows simulation results for two TURBO codes with

an interleaver size of 400 and memory u = 4 encoders. As expected, the TURBO code

with the primitive feedback polynomial performs better at moderate and high SNR's due

to the increased free distance.

6 Conclusion

The excellent performance of TURBO codes may be explained in terms of the distance

spectrum of the code. The 'error floor' observed in simulations of TURBO codes is a
manifestation of the free distance asymptote. Since TURBO codes have relatively low

free distances, the free distance asymptote dominates performance at moderate and low

error rates. The 'error floor' may be lowered by increasing the size of the interleaver.

The exceptional performance of TURBO codes at low SNR's is due to 'spectral thinning'

and the resultant ability of the code to follow the free distance asymptote at moderate

and low SNR's. Finally, for a fixed interleaver size, the performance can be improved by

using primitive feedback polynomials in the encoder. This increases the free distance of

the overall code and results in better performance at moderate to high SNR.'s.

References

[1] C. Berrou, A. GlavietLx, and P. Thitimajshima, _New Shannon limit error-correcting

coding and decoding: Turbo-codes', Proc. 1993 IEEE Int. Conf. on Comm., Geneva,

Switzerland, pp. 1064-1070, 1993.

[2] S. Benedetto and G. Montorsi, _Perfornace evaluation of TURBO-codes." IEEE Elec-

tronics Letters, Vol. 31, No. 3, pg. 163, February 2, 1995.

[3] S. Benedetto and G. Montorsi, _Average performance of parallel concatenated block

codes", Electronics Letters, Vol. 31_ No. 3, pg. 156, February 2, 1995.

[4] S. Benedetto and G. Montorsi, Unveiling TURBO-codes: some results on parallel con-

catenated coding schemes, Dipartimento di Elettronica, Politecnico di Torine, January

17, 1995.

[5] J. D. Andersen, The TURBO Coding Scheme, Report IT-146, Technical University of

Denmark, June 1994.

[6] P. Robertson, "Illuminating the Structure of Parallel Concatenated Recursive System-

atic (TURBO) Codes", Proc. GLOBECOM '94, Vol. 3, pp. 1298-1303, San Francisco,

California, November 1994.

[7] J. Seghers, On the Free Distance of TURBO Codes and Related Product Codes, Final

Report, Diploma Project SS 1995, Number 6613, Swiss Federal Institute of Technology,

Zurich, Switzerland, August 1995.

[8] J. Seghers, L. C. Perez, and D. J. Costello, Jr., '_On Selecting Code Generators for Turbo

Codes", Proc. Allerton Conf. on Communication, Control, and Computing, Monticello,

IL, October 1995.

0
U

e_

Q3

O
U

-g

v

o

O

_u

i0"z

m

I0"_

lO4
41.1

%

\
\
\

|

Free disUn_ _pwm

\
\

,,i|ali,li_ili

0.9 L9

Figure 3: Asymptotic performance of the TURBO code.

10" 8

10 "z

3
ALa¢

I0"

xo_

10"

10 4

Figure 4: Decomposed performance of" the M'FD (2, I, 14) code.

•srzimOUXlod _qp_j _n_s_iJ!P q_.u_ _poo O_qII'LL o_a._ jo _u_m.lo._cl :9 _sn_I,:I

0"£ (FZ 0"I 0_)
....... ,- .. 0 tgI

• "° **o

°°-O°o.

"I

z i | | s • " •

I I

.01

,.O1

80

c.Ol

z.Ol

-_poo O_'_nJ,, _q_ jo _:_u-zu,uo_d p_sodmo:_fl :e _n_!,:l

I,I--PI>--'l_

_.=pI:!t----_1

punnoli _

,..OI

, , , , J)l

Appendix A

The Realization of the Turbo-Coding

System

ZDrich
¥ochschule

Institut fur Signal- und Informationsverarbeitung

Ecole polytechnique federale de Zurich
Pofitecnico federale di Zurigo
Swiss Federal Institute of Technology Zurich

Semester Project

The Realization of the Turbo-Coding

System

Dieter Arnold and Guido Meyerhans
July 14th, 1995

Professors:

Prof. Dr. J. L. Massey
Prof. Dr. D. Costello

Advisors:
Dr. Lance C. Perez
Beat Keusch

Jossy Sayir

Table of contents

Zusammenfassung .. 3

Abstract .. 3

1 Introduction .. 4

1.1 Overview .. 4

1.2 Tasks .. 4

2 Introduction to Turbo Codes .. 8

2.1 The MAP algorithm .. 8

2.1.1 Why and how the MAP algorithm has to be modified for recursive codes 8
2.1.2 Derivation of the extrinsic information ... 10

2.1.3 Recursive calculation of o_k(m) and [3k(m) ... 13

2.1.4 The additive character of the MAP algorithm ... 14

2.2 The Turbo-Coding System ... 16

2.2.1 Transmitter .. 16

2.2.2 Channel ... 20

2.2.3 Receiver .. 21

3 Convolutional Codes ... 24

3.1 General aspects of recursive convolutionai codes ... 24

3.2 Structure of the Turbo Code feedback shift register .. 25

3.3 Improved trellis for the Turbo Code scheme .. 28

3.3.1 Distance spectrum ... 29

4 Interleaver .. 32

4.1 lnterleaver design considerations33

4.2 Interleaver with maximum cycle length eneoders .. .38

4.3 Distance spectrum .. 39

4.4 Terminating interleavers .. 40

5 Quantization ... 43

5.1 Optimized quantization ... 43

5.2 Simulation results ... 45

6 Improvements on the Turbo Coding scheme ... 47

7 Conclusions ... 48

8 Acknowledgements ... 48

Appendix A - References .. 49

Appendix B - Simulation results 51

Zusammenfassung

1993 pr_sentierte eine franz/Ssische Forschergruppe ein neues Codierungsverfahren, genannt

Turbo Code. Dieses erlauht zuverlassige Datenkornmunikation auch ftir Signal-/Rausch-

vert_tnisse sehr nahe bei der Shannon Limit. Dieser Bericht erkl_irt zuerst die Struktur des

Turbo Code. Sp_iter werden Wege aufgezeigt, welche die Leistungsfzihigkeit des Codes

vergrOssem. Dieses wird erreicht durch ._nderungen an den Encodem und Verbesserungen

am Intedeaver. Zum Schluss wird noch die Klasse yon Interleavem definiert, welche es

erlaubt, beide Encoder des Turbo Code Encoders im gleichen Zustand enden zu lassen.

Abstract

In 1993 a coding scheme called Turbo Coding was proposed by a French research group. It

allows almost reliable data communication close to the Shannon limit. The structure of the

Turbo Code is explained. Methods that achieve better performance through modifications of

the encoders and the interleaver are discussed. Finally, the class of interleavers which allows

both encoders of the Turbo Code to end in the same state will be defined.

Zurich, July 14 m 1995

Dieter Arnold Guido Meyerhans

i,

1 Introduction

1.1 Overview

Chapter 1 is dedicated to an overview of the report and the problems addressed in this

project. After this introductionary chapter, a description of the Turbo Coding System (TCS)

as presented in [1] and its mathematical background are given in Chapter 2.

Chapter 3 is dedicated to convolutional codes. Some general aspects of recursive

eonvolutional encoders and their structure will lead directly to some rules for finding

improved encoders for the TCS. Bounds for these improved encoders, which result in better

performance than the encoder used in [1], are given at the end of the chapter.

Interleavers influence the performance of a TCS in two ways. First, it is not possible to

terminate both component encoders of the TCS at the same time with a typical interleaver.

In order to terminate both encoders, interleavers have to be constructed according to

special rules. Second, in order to achieve high performance the ability to move the elements

in the interleaver has to be maximized. In chapter 4, it will be shown how compromises can

be achieved for these contradictory demands.

Simulations were carried out with three different kinds of quantization. The performance of

the TCS with these different quantization schemes is explained in chapter 5.

In chapter 6, improvements on the TCS are presented. These improvements follow directly

from the knowledge obtained from the three previous chapters.

The report ends with chapter 7, where general comments and concluding remarks are

made.

For a detailed presentation of the simulation results the interested reader is asked to look at

appendix A. Simulation results are presented in appendix B.

1.2 Tasks

The following pages contain a copy of the tasks given at the beginning of this semester

project.

2 Introduction to Turbo Codes

The aim of this chapter is to give an introduction to Turbo Codes and a basic explanation of

their performance. To this end, we make use of the Turbo Coding System (TCS) presented

in [1]. Throughout this chapter we follow closely the paper of P. Robertson [2] to clarif-y

many questions that arose in the original Turbo Code paper [1].

2.1 The MAP algorithm

In this section, a complete derivation of the Bahl, et al., maximum-a-posteriori (MAP)

algorithm is given. This derivation is important for two reasons.

First, the MAP algorithm has to be modified to be used with the systematic feedback

encoders of the Turbo Coding System. Second, the modified MAP algorithm presented in

[1] is unnecessarily complicated. A simpler version was presented in [6], which issued

throughout the literature on Turbo Codes.

2.1.1 Why and how the MAP algorithm has to be modified for recursive

encoders

The MAP Algorithm is derived in its most general form in [5]. Where ist application to

nonrecursive encoders was also discussed. Nonrecursive codes are characterized by the

following features:

1) The input is equal to the first element of the state S at time k, that is

dk = S0(k) where Sk = (S0(k),Sl(k) SM.t(k)).

2) To transfer from any state at time k-1 to a particular state Sk = m at time k it is

required that the input bits become all zeroes or all ones. In other words, the

states can be divided into two subsets according to the inputs required for a

transition from time k-1 to time k (Figure 2.1)

Recursiveencodersdo not havethesefeatures.Sincethestateat timek, Sk,is definedby

theinput at time k, dk,andthestateat timek-l, Sk4,it is possibleto reachstateSkwith a

one or a zero input dependingon the previousstateSk._.As a consequenceof this, the

statesof a systematicfeedbackencodercannotbedividedinto subsetsbasedon the input

(Figure2.1).As afurtherconsequence,thea posteriori probability cannot be calculated as

y__P(Sk =m,R, N)

P(d k = OIR_)= S':A_s N o= 0,R s) (A k= subsetof allstateswith So(k)= dk) (2.I)

In addition the decoding rule

{_ if P(dk +(_R,N)>05dk = -- (2.2)
otherwise

cannot be appliedas in[5],where R_ denotes the receivedbitsfrom time I to N (= end of

transmission).

,._';'7...]

!};:i.';Sk__= he Subset 0
!_:;_!": k= 0 i

:.... .. J

Sk-I= ho "_

Sk I fO 1_O Sk = I

k- 1 k time k- 1 k time

a) b)

Figure 2.1 : Example of a trellis of a non-recursive code (a) and a recursive code (b)

Instead, for recursive encoders the logarithm of the ratio of the a posteriori probability

(APP) of each information bit being a 1 to the APP of it being a 0 is calculated. That is,

Ak= A(dk) = log
P(d k = IlR_)

P(d k =01Rl s)

is calculated and the decoding role

,[1, A k >0
d_ = 10, Ak <0

(2.3)

(2.4)

2.1.2 Derivation of the extrinsic information

The expression for A k, given in [5] as

A(dk) = log P(dk = lIRa) _ _Y' (Rk' m' ' m) "¢Zk-' (m')" _k (m)

p(dk = 0INN) =Iog Z_ _ 'yo(Rk,m ,m). ak_l(m'). _k(m)
I11 m'

where dk denotes the data input into the encoder at time k, will now be derived.

(2.5)

F_de_e

1
a k(m) = P(S k = mlR[)= P(S k = m,R[).

P(R[)

N k)_k(m) P(Rk+,ISk m).p(R,+,iR '

,i(Rk,m,m')= P(d k = i,Rk,S k = m,[Sk,= m')

where state m at time k is denoted by Sk = m.

Recall Bayes rule,

P(I_A) = P(AIB)" P(B)
P(A)

and the expressions for the conditional probability,

P(t_A) = P(A,B)
P(A)

Combining these two equalities we obtain the following well known relation

P(A, B) = P(AIB) • P(B)

which turns out to be very useful for the following derivation.

Proof:

(2.6)

(2.7)

(2.8)

(2.9)

In orderto prove(2.5)onecansimplyprove

P(dk = ilR_) = _ _ 7i(Rk, m', m). otk__(m')-13k(m) (2.10)
rll m'

To do so, the left side is first expanded over all states m = 0...M-1 and then (2.9) is applied.

This results in

1

P(d k =ilRp)=_P(d_ =i,S k = mlR_)=_ ,P(d k =i,S k =m,R_). P(R_)
m m

Since the observations are independent of time, this can be rewritten as

_p(d k =i, Sk k . 1
= m,R_,Rk+,)"p(R_,R_+I)

m

Applying (2.9) to the numerator and the denominator gives

N

]_ P(R_+,Idk= i,S_= m,R_).P(dk= i,Sk= m,R_)
m

Using the property that events after time k are not influenced by the observation of R_ and

bit de if the state Sk is known (i.e. Markov property of the source), this can be simplified to

z_P(R_'.,IS,2m)_ P(dk= i,S, = m,R_) I
N k

m, P(Rk+,R,) , P(R_) (2. 1)

13,(m)

where the fu'st term is recognized as 13k(m).

The second term can be rewritten as

P(dk = i,S k = m,R[) _ P(d k = i,S k = m,R[-',R k) _
m

P(R_) P(R_-', R k)

P(dk = i, Sk = m, RklR_-') P(R_-')
(2.12).---

P(RklR_ -_) p(Rk-_) "

The first equality comes from the time independence of the observation and the second from

(2.9). The second term can now be canceled. Notice that expanding the denominator over

all possible states m = 0...M-1 at time k-l and all possible inputs i = 0, gives

P(RkIR_-') ='_'_P(d k =i,Sk =m, Rk R_-'). (2.13)
m i

So the proof continues simply with the numerator which can be expanded over all states

m'= 0...M-I at time k-I as follows,

P(d, -i,S_ = m,R_IR_-')=_ P(d, -i,S_ = m,Sk_, = m', R_IR_-')
II11'

(2.14)

Again using the time independence of the observation results in

1

EP(H_..=i,s, = m, Sk_ , = m' ,Rk,R_-') • P(R_-')

and with (2.9) this becomes

=EP(d, =i,s, = m,R,IS,_, = m',R_-'), v(s,_, = m',R_-') =
m' P(Rt TM)

• J

O_k_,(m)

= y___P(d k =i,S k =m,R k = mlS__, =m ,R_-')' .o_k_ , (m') =
In'

Now the substitution of the second term with o_.t(m') and the first term with _,k(Rk,m,m')

gives

=_P(d_ =i,S k = m,R k = m[Sk_ , = m')'ctk_,(m')=
mt h _ i ,t

?i (Rk,m,m)

= _z_?i (Rk, m, m'). o_k_, (m').
IN'

Equation (2.11) can now be expressed with (2.13) as

P(dk =i, Sk = m, RklRt TM)
Zyi(Rk,m,m')(_k_i (m t)

hi'

P(R_IR_-') y_,EZ_',(R_,m,m')a_-,(m')
m i m'

Interchanging the sums over i and m' is allowed since _._(m) does not depend on i, yielding

Z,yi (Rk, m, m')O_k_,(m')
M'

= Z Z y__,T, (Rk, m, m')0_,_, (m')
m II11' i

(2.15)

Combing (2.11) with (2.10) gives

__.,?_ (Rk, m, m')¢xk_l (m')[3k (m)
In m'

P(dk = ilRtN) = _E y__yi (R k, m, m,)iXk_, (m')

m rn' i

(2.16)

Finally, setting i =0 and i = 1 and dividing gives

P(dk =IIR_) _ _ 71(Rk' m' 'm)" O_k-I(m',)'_k(m)

A(dk) = l°g p(dk --0-'_-)= l°g _ ___,Yo(R_,m, ,m). ock_l(m).[3k(m)
nl In'

since the denominator of (2.16) is in both cases equal.

(2.17)

Q

Difference with the original Turbo Code paper [1]

In the original Turbo Code paper [1], equation (2.14) was also expanded over all possible

previous data inputs dk-t = 0,1. This leads to 0dk(m) depending also on the input dk-_ = i.

o
This is unnecessary, as shown in [7], since 0_k(m)+ C_k(m)is equal to the _(m) defined in

(2.6).

2.1.3 Recursive calculation of _(m) and 13k(m).

The recursive calculation of (_(m) and 13k(m) is now derived.

0_k(m) Was defined in (2.6) as

{Zk(m)= P(Sk = mlR)= P(Sk = 1
P(R_)"

The second term of (2.11) can be obtained by expanding _(m) as defined in (2.6) over the

possible inputs

0tk(m)=Z P(dk = i'Sk = m,R_)
, P(R)

Substituting the term in the sum with (2.15) results in a forward recursion for 0_k(m) given

ZZ_i(Rk,m,m')0_k_l (m')

0_k(m) = m' i
_ _ Yi(Rk, m, m')o_k_,(m')

m m' i

with the initial conditions Oto(0) = 1 and Ct.o(k) = _(k) = 0 ,V k # 0 and V n # 0.

(2.18)

Expanding [_k(m) as defined in (3.2) over all possible states m = 0...M-1 and all possible

inputs i = 0,1 at time k+l gives

ZZP(dk+' =i'Sk" = m',Rk<,RN k.,lSk = m)

[_(m)= " _

where again the time independence of the observations was used.

Using Bayes's rule, the numerator becomes

£ E P(RkN+2ISk+' = m')'P(d k+' = i'St+' = m' ,Rk+tlS k = m)
/

m' i _ N

The backward recursion for [3k(m) is then given by

I

L E 7 (Rk+,,m, m')- _+, (m')

I_k(m)= m,i=o (2.19)I

'_ Z Z yi (Rk+l, m, m'). O_k(m')
m m' i=0

with the initial conditions 13N(O)= 1 and 13N(k) = 13,(k) = 0 ,V k _: 0 and V n ¢ O.

2.1.4 The additive character of the MAP algorithm

Looking at (2.17), (2.18) and (2.19) it is clear that the transition probability '_ is the most

important term.

Equation (2.9) can be rewritten as

7, (Rk, m', m) = p(R, Id_ = i,S k = m, Sk_ ' = m'). P(d k = ils, = m, Sk_ ' = m')

•P(S, = m[S,_, =m')

As will be show in section 2.2.3, Rk consists of Yk' the systematic information sequence,

and yP, the parity sequence *, which are independent of each other. The first term can

therefore be written as a product of the two received bits. That is,

p(R_ld_ =i,S k = m, St_, = m')= p(y;ld, = i,s, = m,S,_, = m')

•p(y_ldk =i,S k = m,Sk_ , =m')

1 In 2.2.1 we shall see that Xk p consists itself of two parity sequences.

-(y_ '-om_'(i,m',m)) 2
2_2

where is the Gaussian distribution (we consider here the

channel to have additive white Gaussian noise, see 2.2.3), and

s/ m'
om k P(i, ,m)

is the modulator output (see 2.2.1.d).

Since y_, is independent of the states m, it can be taken out of the logarithm directly.

Defining the a priori probability

eX(dO

P(S k = m[Sk_ i _. m')= 1+eX(d,) when P(d k = llS k = m, Sk_ I = m') -" l and

eA(dk)

P(S = mlsk_,= m')= 1- 1 +eX_d,_ when P(d k
= 0IS k = m, Sk__ = m') = 1

leads to

A(dk) "-_.

1 Z ZY_ (Y[' m' ' m)" <Xk-'(m')" 13k(m)

2-0 2 y_, +X(dk)+log m m'
_ _ 7o (y_,rn',m) •ak__(m').[3k(m)

Kc.y_t _ m m' •

h,(dk)

with

(2.20)

,m' ,m)= p(y[ld_ = i,s k = m,Sk_ , = m')-P(d k = ils_ = m,Sk_, = m').

The first term in (2.20) is the received channel output multiplied with a constant

depending on the channel. The second term is the a priori probability of the bit k being a 1

or a 0. The third term, the so called extrinsic information, can be considered as the updated

a priori information for a possible second decoder. Together, these terms give the a

posteriori probability A(dk). Figure 2.2 shows the structure of a soft input/soft output

decoder.

A prt_'or/Prob. ._

A (dk) /

Channel OutpuL__..._
:o"y

Soft-Input

Soft-Ouput
Decoder

A posteriori Prob.

A(dk)

Extrinsic Info.

Ae(dk)

Figure 2.2: Structure of a Soft-Input/Soft-Output decoder

2.2 The Turbo-Coding System

In this section, we discuss the three main parts into which a communication system can be

divided: Namely the transmitter, the channel and the receiver as shown in Figure 2.3.

ITra.smi.erChan.e' R oiverI

Figure 2.3 - The three main parts of the Turbo-Coding system

2.2.1 Transmitter

The transmitter itself can be divided into five parts: the source, the encoder, the puncturer

and the modulator as shown in Figure 2.4

J _k_=== J

Figure 2.4: Transmitter

a. Source

The source produces the message to be transmitted. For the simulations reported here, a

source generating a random binary sequence was used. In order to avoid difficulties caused

by a poor random number generator the Data Enscritption Standard (DES) random-

generator from [17] was used.

b. Encoder

The encoder consists of an interleaver and two binary, recursive, systematic, convolutional

encoders (RSC), which henceforth are referred to as component encoders 1 and 2. One

therefore operates in GF(2) and all additions are EXOR operations.

A non-uniform interleaver of size 64000, which is filled up row by row and read pseudo-

randomly (Fig. 2.5), is used in the TCS. Although interleavers are well known, they are of

central importance in a TCS. Chapter 4 is dedicated to a more detailed presentation of

interleavers and their influence in a TCS.

Input 1 2 3 4

[1, 2, 3,..., 12] -o 5 6 7 8

9 10 11 12

Output

----)[7, 2, 3, 11, 1, 12, 4, 5, 6, 9, 8, 10]

Figure 2.5: Nonuniform interleaver

As proposed in [1], the component encoders are identical, although this is not necessary in

general. These component encoders are defined by their rate R, the number of states

(M=2 _) determines the constraint length nA = (m + 1) and visa-versa, a feedback generator

Gl and a feedforward generator G2. The first component encoder operates directly on the

information to be transmitted, while the second component encoder is fed with the

interleaved information sequence. The output of the first component encoder consists of the

systematic sequence and the parity sequence, while the output of the second component

encoder consists of the parity sequence only. The systematic sequence of the second

component encoder is not transmitted (Figure 2.6).

d = [d.d 2..... d.]

Component

D cncoder I

[Interleaver] d' "l Componentcncodcr2

XI= I= t= t==Ix! ,X 2 XN]

Ip Ip IpXIp =[x I ,x 2 x_]

X 2. -- 2b Zi 2i--[X I ,X 2 X_] not transmitted

x_-[x' .x_.....x_l

Figure 2.6: Encoder

As mentioned before, the same encoders and interleaver as in [1] have been implemented.

The two component encoders have constraint length nA = 5, generators GI = 37 and G2 = 21

and are used in a parallel concatenation (Figure 2.7).

The data sequence d is the input. The first output sequence x TM is equal to the input

sequence because of the systematic structure of the first component encoder. The second

output sequence x _pis the parity sequence from the first component encoder. This is given

by
M M

-r-_'p .'p _'p 'P d k + _.,g_ 'x 'p-L.-, ,"2," k X.] with x_=_gf" ' and ' = • ak_ iak_ i ak

i=l i=l

where G2=(g[f f r,g2,g3,g4) = (1,0,0,1) is the

b b b
G1=(gl ,g2,g3,g4 b) = (1,1,1,1) is the feedback generator.

feedforward generator and

The third output sequence x 2p is the second parity sequence, generated by the second

component encoder. The parity sequence x"2p is obtained in the same way as x Ip with the

difference that the data d _ on which the second component encoder operates is interleaved.

Thus,

M M

_ i-.y2p y2p 2p 2p Z 2 and 2 I Z b 2x2P -- L"I ' "'2 ''''' Xk ' X N] with x_ p = g{" at_ i a k = d k + gi "ak-i ,
i=l i=l

where again(g[, f f f _, b b b= (gl ,g2,g3,g4) = (1,1,1,1).g2,g3,g4) (1,0,0,1),

d =[d,,dz,....d_l X_ _ w k=Ix, .x_.....x_l
P

__x" =I_L _','....._'.'I _--

Ix, .xl x. I
P

Figure 2.7: Encoder

The encoder produces three bits, _ _P and x_p for each input bit, and thus the rate of
**k)'*k

the encoder is 1/B.

Both component encoders are assumed to start in the all zero state: i.e. a_ anda_ are zero.

Due to the interleaver the termination of both component encoders at the same time turns

out to be difficult. At this point, only the first component encoder is terminated and the

second is left 'open'. As a consequence, the initial condition of 13N(k) in the second, non-

terminating trellis has to be changed from (2.19) to

13N(k) = C_N(k),V k = 0...M- I. (2.21)

A solution to this problem was not given in [1]. However, it will be shown in chapter 4 that

terminating both trellises is possible for certain classes of interleavers.

c. Puncturer

In order to achieve a higher global rate than R = 113 the parity sequences x Ip and x2p are

punctured according to a puncturing matrix P. For a global rate of R = 1/2, P is chosen as

and the punctured 'parity bit' sequence is

xp p _ {'ylp y2p IpI-"l '"2 XN-I 'X2p]"

This means that x[? is sent at every odd time and x,2p at every even time k.

d. Modulator

The modulator assigns to every bit of the incoming sequences x_, x'" a value corresponding

to its level. We chose the same modulator as in [I] which assigns a + 1 in case of a 1 and - I

in case of a 0 according to (2.22)

xm_ _ = 2-x_ _ - 1 (2.23)
l_ _ 1xm_ s = 2 • x k

where xm_ and xm_ s are the outputs of the modulator at time k.

Figure 2.8 gives a detailed overview over the transmitter

d = [d,,da.....dN l
x =[xt ,x z x_]

I

Dm Smm'utuSSource]

tntala__x st' = [x',V.x_e.....x_Pl

x :p =Ix, .x x. I

up it up lp
[_lndtlfet Jln=[xf .x, x_.x_

_eh [

MatIm I

P

I

-- I_ltt.

M

o

a

u

!

|

!

o

r

L__

into the ctmmd

Figure 2.8: Detail view of the transmitter

2.1.1 Channel

The channel for x TM and x _' is the additive white Gaussian noise (AWGN) channels where an

independent noise sample n 1'2 with zero mean and variance or21.2= N°a.2 / 2 is added to each

transmitted bit. The channel inputs are denoted by x and the channel outputs by y (Figure

2.9).

I$

Xk

I

Is II l
Yk =xk+n_

X U2P
k

2
11k

Figure 2.9: Channel model

2.1.2 Receiver

The receiver provides the Turbo Code with its name and its performance. Analogous to the

transmitter, the receiver can be divided into a depuncturer, a decoder and a sink. The

demodulator is part of the decoder (Figure 2.10).

From the
channel --- Depuncturer[-I-IDecoder I _[Sink

Figure 2.10: Receiver

a. Depuncturer

The depuncturer separates the (demultiplexed) parity bit sequence into the two parity bit

sequences ytp and y2p and substitutes a zero for the punctured bits (Figure 2.11).

_pp -- i'_tlp _2p .tip ,u2Pl
,7 --LJI *J2 '""JN-I*JN J

"'-.

Ip Ip Ip Ipy =[y_ ,O,y3,0 y__,,Ol

2p 2p 2py2p=[O,y 2,0,y_ O,ys]

Figure 2.11: Depuncturer

b. Decoder

The decoder consists of two deinterleavers, two interleavers, a final harddecision decoder

and two softinput/softoutput decoders which are denoted as component decoder I and 2.

Both component decoders use the modified MAP algorithm.

The first component decoder is fed with the a priori probability A tin, the information

sequence ylS and the parity sequence ylp. The result of the f'wst component decoder is A _°''',

the extrinsic information which is independent of the a priori information and the systematic

information for the corresponding bit dk. At the output of the first decoder, the a posteriori

probability (APP) A _°ut, is not of interest, since the decoder has not made use of y2p which

may improve the APP.

".....¢1 l
-._1

p Is Is ,_y' =[y,.....

[

p_ p lp P /

t

y'
t

Figure 2.12: Decoder

The second component decoder is fed with A 2in (which is equal to A. t°ut deinterleaved) as

the a priori probability, x 's deinterleaved and x"2p.The deinterleavers are necessary to ensure

that x TM, A 2i" at time k corresponds to x2p at time step k. The second component decoder

produces the new extrinsic information A 2°"' and the a posteriori probability A, since both

parity bits are now used.

This procedure is known as iterative decoding. The two component decoders are

suboptimal because the first component decoder uses only half of the available redundant

information (x 'p but not x2p). As a consequence, an improvement in performance can be

achieved through the use of a feedback loop (A Hn = A 2°ut). In the simulations up to 18

iterations were used as proposed in [1]. This means that for every information bit dk both

component decoders are used 18 times. The term Turbo Codes is given for this iterative

decoding scheme using feedback with reference to the turbo engine principle.

After 18 iterations, the APP of the second component decoder is led to the final hard-

decision decoder which decodes d e according to (2.4).

c. Sink

In the simulation program, the sink is simply represented by a procedure for counting the

decoding errors.

The achieved results with the algorithm are shown in Figure 2.13. The performance is the

same like presented in [1].

er
ILl
m

I.E-1

• , 1 Iteration

,-,r: _i :. , , ---am--2 Iterations

6 Iterations
,z_,_ _,,",.::I ,N ,-

1.E-5 _ ' 'XA +10 Iterations

........................_ '-_ _,......18 Iterations

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Eb/No [dB]

Figure 2.13: BER of Turbo Code with a 65536 bit interleaver

Some modifications on the encoder and interleavers are made in the following chapter. But

the structure of the algorithm will not be changed.

3 Convolutional Codes

The turbo code uses a recursive encoder to produce its parity check bits. This chapter

discusses the structure of the trellis used in the turbo-code, which is important to

understand design considerations for interleavers.

3.1 General aspects of recursive convolutional codes

The turbo codes are realized with convolutional encoders in systematic feedback form. Such

encoders always have a feedback and a forward path as shown in Figure 3.1. The encoder is

given by its generator polynomials in octal numbers, e.g. (37,21). The f'u'st number defines

the feedback and the second one the forward path.

[d,,ct,.... d=.... d,,]_=
[x,L

Figure 3. i : Standard turbo encoder (37,21)

x," x,'*]

The constraint length is defined as

nA -- m+ 1, (3.1)

where the memory order m is the length of the shift register. The constraint length is not as

imprtant for recursive encoders, as it is for feedforward ones. Another parameter, the so

called cycle length n_yc_ is more important for recursive codes. The cycle length is best

defined by considering the encoder output sequence for a base information sequence. A

base sequence is an information bit sequence in which only one bit of the vector is equal to

1, e.g. d=[0,0,0,1,0,0,0 0,0]. The corresponding output sequence shown in Figure 3.2, has

a repetitive structure. The length of this repetitive sequence is called the cycle length.

1 /

[001000000o000... 000]-_ Encoderl-_, [0011 O010100.1010010...]

Figure 3.2: Output vector of a base sequence

The cycle length is given by the feedback path of the encoder and is bounded by the

memory order by

m< n_ < 2" - 1 (3.2)

In the case of the turbo code with generators (37,21), the cycle length is n_,, = m + 1.

The cycle length is important in the design of the interleaver, as will be shown in chapter 3.3

and chapter 4.

3.2 Structure of the Turbo Code feedback shift

register

The structure of the systematic feedback encoder is important in the design of good

intedeavers and in the achievement of better performance. As described in the previous

chapter, a recursive encoder has a repetitive output sequence. A similar cyclic process exists

in the content of the encoder's memory.

Figure 3.3 shows the typical structure of the turbo code encoders, where all feedback taps

are equal to 1.

[d., d..,, ... d=, d,]

Figure 3.3: Structure of a recursive encoder, where all feedback taps are set

Thecontentof thememoryof theencodershownin Figure3.3 isgivenby

So(n)=_l_(n)'d k
k=l

withlk(n)=((n-k)mod(m+l) =O)_((n-k)mod(m+ l)= l)

= ((n-k)mod (m+ I)= O)_((n-k-l)moO (m+ l)=O)

and where

Si+_(n) = Si(n- 1)

m:

So(n)..S,,q(n):

dk:

Memory order of encoder

Content of the memory cell at time n

encoder input bit at time k

(3.3)

(3.4)

Example:

The information sequence for an encoder with feedback polynomial (37) is

d=[O,l,l,0,1,0,0,0,0,1,I,1]. According to (3.3) and (3.4) this will lead to the following

contents of the encoder memory:

n

_<0

1

2

3

4

d, So(n) Sl(n)

0 0 0

0 0 0

1 1 0

1 0 1

0

0

0

0 0

0

S2(n) S_(n)

0 0

0 0

0 0

0

0

0

1

0

1

1

9 0 1 0 1 1

10 1 0 1 0 1

11 1 1 0 1 0

12 1 1 1 0 1

Induction proof of (3.3)

Initialization condition: Ik (n) = 0 V n < 0 or n < k, S O(n) = 0 V n < 0 and because of (3.4):

S i (n) = 0 V n < i and the fast incoming value: So(1) = d t,

Initialization test:

It(l) =((1-1) mod (m+ 1) = 0) _ ((1-1) mod (m+ 1) = I)= 1_0= I_ Assumption is true

for the Initialization

Recursion:

m--I 1l,.,.

/ 1= _l_(n-l-j).d_ +l.d.
\j=o k=!

I }= Ik(n--l--j).d , -- kE j .d k +l.d.
_,,j=O k=l t j=l =O, see OelOW

=/_lk(n-- 1-- j)'dk]+ l'd.
\k=t j=O

n-I

=t___, ((n-1- k)mod (m + 1)=0)_ ((n-2- k)rood (m + 1)= 0)..

..._((n-2- k) mod (m+ I) =0)...

• ..((n- l-(m-2)-k- l)mod(m+ l)=O)_((n- 1- (m- 1)- k)mod(m+ 1)=0)

@((n - I- (m - I)- k - I)mod (m + I)= 0)).d k + I-d.

=[_((n-k-l) mod(m+l)=O)@((n-k)mod(m+l)=O).d kl
\k=i /

+ ((n - n - 1) mod (m + 1) = 0)@ ((n - n) mod (m + 1) = 0). d,

n

= '_ ((n - k - 1) mod (m + 1) =0)_ ((n - k) mod (m + 1) =0)-d k
k=l

Remark:

_ Ik(n--l--j)

j=l k=_"-j_

=_, se_ below

Ik (n) = 0 Vn < k,

•dk = 0, because

here: n-l-j< n-j and n-l-j< n

Q

The corresponding cycle length for recursive encoders where all feedback taps are set is

n_. = m + 1. This can cosily be seen for a base sequence. The contents of the encoder

memory are equal every m+l time units and therefore the cycle length has to be m+l.

3.3 Improved trellis for the Turbo Code scheme

The choice of the generator polynomials for a given memory order m influences the

performance of the Turbo Code.

Calculations of the distance spectrum as well as simulations for pseudo random interleavers

have shown that the cycle length of the linear feedback shift register should be 2" - I. This

maximal cycle length can be achieved with a primitive feedback polynomial. In a subsequent

chapter, there is an explanation of why it is crucial to use maximum cycle length shift

registers.

The feedback shiftregisterof a maximum cycle length code has another advantage.

According to [16] itisnot possiblefor a base informationsequence thatallof the ones of

the output are on even or odd positions.This means thatitisnot possibleto cancelallthe

ones withpuncturing.This would reducethe distancedramatically.

While the feedback path is mainly responsible for the cycle length, the feedforward

polynomial has to to be choosen such that catastrophic encoders are avoided. If the case of

catastrophic encoders is excluded, it is not so important which feedforeward generator is

used.

3.3.1 Distance spectrum

A change of the feedback path has an influence on the distance spectrum of the code.

Unfortunately, it is very difficult to calculate the whole distance spectrum of the Turbo

Code system given in [1], because the calculation time for such big interleavers is very high.

Therefore, the effects for interleavers of size 32 are considered to illustrate the basic

principles.

The following figure shows the distance spectrum for an encoder with memory three and

with different feedback polynomials for an interleaver of size 32. As described above, the

best results can be achieved with maximum cycle length feedback shift registers.

Distance spectrum

1.E+8

1.E+7

1.E+6

1.E+5

--- 1.E+4

"o 1.E+3

1.E+2

1.E+1

I.E+O

1.E-1

10

w

100

Figure 3.4 - Distance spectrum of turbo codes with different feedback paths (Blocksize: 32, Iterations: 10)

4 Interleaver

Interleavers are commonly used on channels with memory so that they appear to the

channel decoder as memoryless. In most coding systems, they have no influence on the

performance, if memoryless channels are used. This is not the case in the turbo coding

scheme. In this scheme, the interleaver is an integral part of the encoder and can

dramatically effect the performance even on memoryless channels.

The interleaving process scrambles the order of the code symbols d. in time while the

deinterleaving process unscrambles the recovered symbol stream into the original sequence.

[d,,d_,d,,d,.d,,d,,d,,dd _{ Interleaver _ [d,,d,,dr.d3,d,.d,,d,,dj

[d,.da.d,,d3.d,,d,,d,,dd --_Deintedeaver _ [d,.d=.d,,d,.d=,d,.d,,dd

Figure 4. I: Interleaving process

This chapter discusses different kinds of interleavers and gives some rules for building good

interleavers for use with Turbo Codes.

4.1 lnterleaver design considerations

The original turbo code [1] uses a pseudo-random interleaver. For this class of interleavers,

the only condition to the interleaver function G(i) is that the transformation is bijective.

information bits

pseudo random premutation
of information bits.

interleaved information bits

Figure 4.2: Pseudorandom Interleaver

The transformation itself is a pseudorandom process, which is defined once and does not

change during the encoding / decoding process. Pseudorandom interleavers follow no

special rules and can therefore result in a transformation, which leads to a low Hamming

distance. The following figure shows the error correcting capability of the Turbo Code,

using a typical pseudorandom interleaver of size 400.

Error correction capabilities

1

7
Iterations

13
1 2 3 4

-1.0E-1

.8.0E-2 _. m
_..o

• -- lb--

6.0E-2 _
4"-

j_ O

4.0E-2 2 =m

-2.0E-2 o ._

•0.0E+0 ,_, m

5 6 7 8

of errors in a block

Figure 4.3: Random Interleaver (Blocksize: 400, EdN,: 1.9 dB)

Most of the errors can be corrected through the iteration process. However, there are some

errors which cannot corrected and 'fall through'. It is significant that error patterns of odd

weight seldom occur and that when an error occurs it is with a high probability a two bit

error. A brief look at the bit error probability on different inlerleaver / block positions

shows that the bit errors are concentrated in certain positions.

BER

O.Oe-1 4.0e-4 8.0e-4 1.2e-3 1.6e-3

Figure 4.4: BER on different bit-positions within a block

The positions with a high bit error rate are given by a special interleaver symmetry, which

leads to a small weight for certain codewords. An information bit sequence with just two

ones is an example for such a case.

D Eo er lI "" LPuo=at,on
I Intedeaver

t O' _1 Encoder#2 I x'_ "J

Figure 4.5: Encoder structure

T

Ifdi and di+cycl¢ are equal to one and all other bits are zero, then x _p, the output of encoder 1,

has only two ones after puncturing. A worst case interleaver will just move both information

bits by n. Then there will be only two parity check bits in x 2p, the output of encoder 2. The

resulting distance from the all zero codeword is only 6.

dl d_

!olo1_1olololo111olololololololol_ Iolo1_1_1olo1_1_1ololotololololol

N_ Nk_tedeaver ,_% Punctuation iolo111olo11111olo111ololololOloI"¥" Distance to all 0
Trellis_

lololOlOlO111olololo111ololololol---E-_Iololololo11111olo11111ololololOl Codeword: 6
d._ d_

Figure 4.6: Turbo-code with small free distance

A turbo code using the bad interleaver shown in Figure 4.6 has poor error correction

capabilities. This kind of interleaver cannot avoid that there are many two bit error, called

errors of order 1, in the code. Errors of order n are defined as the number of two by two

errors in a block (e.g. Error of order 2:2 pairs of errors).

Applying the following rules to the design of the interleaver decreases the probability of

errors of order one and two:

Decreasing errors of order 1

Maximize

min(li- Jl+IG(i)- G(j)I), v i, j, where

i _ j,i rood n_, = j mod n_ya,, G(i) mod n_ra, = G(j) rood n_rd,

(4.1)

ij are the positions of the switching bits and G is the transfer function of the interleaver.

Decreasing errors of order 2

Maximize

min(li, - ial + lJ, - J,l + IG(i,)- G(j, I + IG(i,)- G(j2 _ - Ov(i, j)- Ov(G(i), G(j))),

Vi t,i2,jt,j2, where i I _ i 2 ¢ jl _ J2, i) mod nc_e = i 2 mod nc_e,

j, rood n_,, = Jz mod n¢_,,, G(i,) mod n¢_,, = G(j,) mod n¢_,,,

G(i z) rood n_ = G(j 2) mod nc_:,_

(4.2)

The Overlap Ov(i,j) is defined like showed in Figure 4.7. The example showed in Figure 4.8

has no Overlap.

x t

Overlap

Figure 4.7: Overlap in Error of order 2

Information sequence

Interleaved information I ! [[]

sequence \
rlcv=

d_ d_,_, _ _,_,
IIIIIIIII IIIIIIIII

IIII IIIII1[11
/ \ !

N_

Figure 4.8: Bad interleaver for 2 nd order errors

Applying theserules will encreasethe performace.Unfortunately,it is only possible to

decrease errors of order up to two with a reasonable effort on computational power. Figure

4.9 shows an interleaver where the minimum of (4.1) and (4.2) is 30.

Error correction capabilities

0

Iterations
6

3 45678
1 2

errors in a block

Figure 4.9: Error correction capabilities of improved interleavers (Blocksize 400, E_No 1.9 dB)

The influence of the interleaver improvement on the two first iterations is small. But with an

improved interleaver, there are less errors which can 'fail trough' and this improves the

performance.

The resulting free distance of the turbo code is a function of the trellis as well as the

interleaver. Simulations have shown, that optimized 400 bit Interleavers are better than

interleavers of size 1000 for a signal to noise ratio above 2 dB.

Interleavers of size 400

1E-1

1E-2

1E-3

IJJ

1E-4

1E-5

1E-6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Eb/No [dB]

Figure 4.10: BER of improved interleavers

4.2 Interleaver with maximum cycle length encoders

The improvement rules explain why it is important to use a maximum cycle length encoder.

According to (4.1) a bad transformation is given if imodn,_tc=jmodnc_e and

G(i) rood n_le = G(j) mod n_le. Therefore the probability of choosing a bad intedeaver

transformation for the element j is

1
p_ _ (4.3)

n cycle

In order to minimize bad interleaver transformations one has to maximize the cycle length.

1.E-1

1.E-2

1.E-3

n-
"' 1.E-4
m

1.E-5

1.E-6

1 .E-7

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Eb/No [dB]

Figure 4.11 : Influence of maximum cycle length code to the performance

Another way to improve the average weight of a crucial codeword is to increase the size of

the interleaver. If a bad interleaver transformation is given, then the average weight of the

parity bit sequence is

N'

'_(N'-i).i

d" w i--i "" w
N'

Z(N'-i)

Nt3 W

'(N,2 -N') =--(N'+ 1). -N') 3

where w is the number of ones in a cycle w = nc_:_c and N'= N where N is the

2 nc_lc

interleaver size. So the average weight of the parity bit sequence is

1 (1)=_
• N___+ 1.(N + n_,e) (4.4)

=_.nc_l, nc_l '

The observation that a bigger interleaver size will lead to better performance has been made

several times in the literature[7].

4.3 Distance spectrum

The distance spectrum of the code is partly a function of the interleaver. Calculations of

distance spectrums for small interleaver have shown, that the average distance remains the

same, even the intedeaver is improved. With an improved interleaver the variance of the

distance spectrum decreases and the minimum distance is increased. The higher free

distance lowers the error floor. This explains why a performance increase can only be

shown for a signal to noise ratio above 2 dB in Figure 4.10. For lower SNR's the whole

distance spectrum is responsible for the performance and, because the average distance does

not change, an improvement cannot be expected there.

4.4 Terminating interleavers

One of the problems with the Turbo Code scheme is, that it is not possible to terminate both

encoders with a general interleaver. The original MAP algorithm cannot be used for the

second encoder. This will lead to slightly lower performance especially for small

intedeavers.

There exist (no_l,).(-_--)! different interleavers that terminate both encoders for every

interleaver size N, where N is a multiple of r_yc_e. For these block sizes, a permutation of

elements such that

i mod no.c_, = G(i) mod no.c__ Vi (4.3)

where G(i) is the interleaver function, has no influence on the content of the memory cells at

the end of the block. Therefore both trellis will terminate.

_ i ..d,.................. d_,.

d_..= d_,

Permutations only under elements of the same block

Figure 4.12 - Permutations for terminating interleavers

Thefollowing proofis valid only for encoderswhereall feedbacktapsareequalto one(See

Figure3.3).Theterminologyis thesamelike in (3.3)

IfN rood(m+l)=Othecontentsof thememorycellscanwrittenasfollow:
N N

k=l k=l

'v' 0 < j < m (4.4)

Proof:

N

m+l

Sj(N) = ,'_dk.o,,+,)_ i +dk.o_.t)_j_ ,
k=l

N

='_((-k-j)mod(m+l)=0)d k _((-k-j-1)mod(m+l)=0)d k
k=l

N

='_((N-k-j)mod(m+l) =0)d k _((N-k- j-l)mod(m+ 1)=0)d k
k=l

N

=:,So(N) =_((N-k)mod(m+l)=0)d k _((N-k-1)mod(m+ 1)=0)d k
k=l

bl-j

Sj(N) = _((N- k- j)mod (m+ I)-0)d k _ ((N- k- j-I) mod (m+ I)=0)d k
k=l

N

+ _((N-k-j)mod(m+l)=0)d k_((N-k-j-l)mod(m+l)=0)d_

k=N-j+l

=O,because of Initialization

=So(N- J)

Addition is a commutative operation, so a change in the order has no influence on the result

and both encoders will be in the same (zero) state at the end of the block. The second

encoder terminates if and only if i mod n_,a_ = G(i)mod n_.a_ Vi, where G is the

interleaver function.

It is possible to build optimized interleavers under these conditions. However the

performance of terminating interleavers will be worse in general because of the reduction in

the freedom in placing the elements. Simulations have shown, that it is only worth to make

self terminating interleavers, if their size is less than 1000.

A special class of interleavers, where both encoders are terminated, are helical interleavers,

as discussed in earlier works [8][9]. No interleaver optimization will be made for this class

of interleavers,so thatthe axisratio of thehelicalinterleaveris crucial to theperformance.

Theperformanceof theTurboCodewith a goodandabadhelicalinterleaverisshowin the

following twoexamples.

1E+0

1E-1

1E-2

tu 1E-3

1E-4

1E-5

1E-6

0.0 0.5 1.0 2.5 3.0 3.51.5 2.0

Eb/No [dB]

Figure 4.13: Helical interleaver of the size 1190 with different axis ratios

The helical interleaver with the axis ratio of about 1 clearly gives the better results. A look

at the distribution of the errors within a block shows that the errors are concentrated on a

band by the 119" 10 helical interleaver

of errors

40 80 120 160 200 240 280 320 360

Figure 4.14: Errors in different block positions (119"10 Helical interleaver, E_No: 1 dB)

The error band corresponds with the symetry of the helical interleaver. Calculating the

distance given by (4.1) and (4.2) will show similar bands.

5 Quantization

Loss of error correcting performance due to quantization is well known. This loss can be made

negligible by using an appropriate number of quantization levels. An eight level quantization

scheme has turned out to be sufficient in practice.

However, all of the simulation results in the Turbo Code literature were obtained without

quantization (to the best of the authors. Therefore, the question arises whether quantization

has an unexpected influence on Turbo Codes. That is on the performance improvement with

increasing number of iterations.

5.1 Optimized Quantization

For many applications, the results achieved by equal spaced quantization is sufficient. To get

better results and to say something about the quality of equal spaced quantization, it is possible

to apply the optimized quantization presented by Massey [13]. He showed that if the

likelihood ratio is defined as

_Pv(Y[O)

J'PY(Yl1) (6.1)

then the optimum values for the likelihood thresholds are

Tj = _J_,(g_j_,)- _,(_j) Vj. (6.2)

For an AWGN channel the probability density function of the received signal is given by

1 / LP_"(yl0)= -f_: No exp _00 , pv(yl 1) = _/rl:" N0_ exp,, < (6.3)

Equation (6.3) can be normalized and written as

,where a = _ N_-_and s= y.

With the following iterative procedure it is possible to find the optimized likelihood thresholds

Tj and quantization thresholds Ij. The example is made for an n-Level quantizer. The

initialization conditions are I 0 = --oo, I, = oo, T O = 0 and T, = oo

.

2.

.

.

5.

Choose It arbitrarily.

Calculate

It

Ip (O)ds
=?,

fPs(S_l) ds

Find I2 using (6.1) and (6.2). First calculate

),,(9_,) = T2

then fred I2 from

lPs(_0lds

',
lPs(S_l)ds

it

Find I3 through In-i in the same manner by repeating 2 and 3

Calculate

_.(SR. ,)= T"z-'
- _.(_R._2)

If _.(9_._,)> _.(9_._,), choose a smaller value for I1 and return to 2. ff _.(_R._,)< _.(_R._,),

choose a bigger value for I1 and return to 2. Stop if _.(gt._,) = k(SR,_t).

The conversion between the likelihood and the quantization thresholds is done in the following

way

Tj

-= xp
Ps(S_l) 1

2_ exp

2

II,+aJ

2

= exp(2-a.Ij).

]
5.2 Simulation Results

The quantization results scheme affects the performance of the code. This depends on the

number of quantization levels and the appropriate choice of them.

lO_

lO-

10"

10"

1o'

l(Y

R 10"

t¢

10.
o

1_fforlmtQlJaltlzldonl wt_ _ Inte_ of SIzll lk, 1 Iteration

- -" " " '" " -'"_ " [Ire(J: F._,aJ.Spac©

I_:r_-r_ Opt-qua,t
biue: No-Qmm

o'.s ; _'.5 i 2'.5 3
EtFt_ In dB

3.5

YMerimt Quantizatio_s v_th Random Interleave;' of Size lk, 6 Iterations

!!!!!:._!"-:!))!h'!!!!!!_!)!!!!!l!!)!!:!,'-:::':_):m_-

I

....._,,_,,_,.......,.......,.......
..: F....... I............ ;_....... :........

'l ! 1 ! I I _. ! ! ! H .@_v,,k_! ! *._.! ! ! ! ! !]l

....... :........ ;. :. :........ _........ :....... -I
i I ; ; [; I

0.5 1 1.5 2 2.5 3 3.5
EB/No indB

Different Ouaraza_o_s wilh _ Interk_ave_ of S_ze 1k, 3 Iterzat_o_l

! • ,! ; !." • ".] .-" !. ! :" _, ! :" "., " ;

- ° ,- - -,- - -1 , - - i - -

" . °

EI_NO In _

[Hfferent Quanlzmior_ wllh Random Intodeew(of S_zo lk, 18 Iwsdom

!! ":'] ! !',! ! !',1_,i' _-_ 1

0 0.5 1 1.5 2 2.5 3 3.5

EI:_o in dO

Figure 5.1: Comparision of different quantization methods on different iterations for 32-level quantization

Figure 5.1 shows simulation results where different quantization methods are compared for

several iterations. The first method is called the 'Equal-Space' method where the differences

between all quantization levels are equal to 1/16 for 32-level quantization; i.e. they are

independent of the Signal-to-Noise-Ratio (SNR). The second method, called 'optimal

quantization', is also a 32-level quantization method but the levels are now dependent on the

SNR, as proposed in [4]. As a comparison, unquantized decoding was used to obtain the

results of the blue graph. The best results are achieved without quantization. Choosing the

quantization levels as a function of the SNR minimizes the loss of performance caused by

quantization.

These observations can be summarized as follows. The simulations results show that

quantization leads to the expected performance degradation. It is interesting that this shifting is

fully maintained throughout all iterations.

B

E

R

Zone A ,,_ne B

__..:,_ Zone A

_" \ floor
_'"° I

Eb/No in dB

Figure 5.2: BER function of the Turbo-Code with floor (dashed without floor)

In conclusion it can be said that quantization has no unexpected influence on Turbo Codes.

However, one detail has to be mentioned. Since the BER-function of the Turbo Code has an

error floor, a small dB loss results in much greater BER loss in zone B than in zone A (see

Figure 5.2).

6 Improvements on the Turbo Coding

scheme

In the original turbo-code scheme the output information sequence is coming out of the

decoder two. This has the disadvantage that the output is based on a nonterminating trellis,

if a general interleaver is used. By changing the decoding order and decoding the open

trellis first, it is possible to improve the performance.

F-eedmck

N-=t&_.....¢] ___

r"=[_,_ _.....&'! =!co_

f'=tv,_.....y_l_ ___2

ytp _lvlp f_vJp x_P O]
--t Jl 'v_J3 '"'_JN-D a

At_ _n IA_=t_"_]

decker 1

Figure 6.1: Modified Turbo-Code scheme

The change of the decoders has the second advantage of a decreased complexity, because

no deinterleaver is necessary for the output.

The following figure compares the performances of the two decoder positions. The same

interleaver, trellis is used for both decoding schemes.

7 Conclusions

We have explained the structure of the turbo-code scheme. The results claimed in [2] and

[7] can be reproduced with the simulation programs except for the optimized 1024 bit

interleaver from [7].

It is possible to increase the performance of the turbo-code by using maximum cycle length

linear feedback shift registers in the encoder. The use of them decreases the probability of

low weight code words.

An interleaver modification rule was presented which allows the construction of better

codes. In combination with maximum cycle length linear feedback shift registers better

results could be achieved than presented in [7].

F'maUy, we have given the class of interleavers which allows that both encoders of the

turbo-code ends in the same state.

8 Acknowledgements

The authors would like to thank Dr. L. Perez, B. Keusch and J. Sayir for their hints and

many helpful discussions and comments.

Appendix A- References

[1]

[2]

[3]

[4]

[51

[6]

[7]

[8]

[9]

[10]

[11]

C. Berrou, A. Glavieux and P. Thitimajshima, ,,Near Shannon limit error-correcting

coding and decoding: TURBO codes", Proc. ICC'93, Geneva, Switzerland, 1993,

pp. 1064-1070.

C. Berrou, A. Glavieux, ,,Turbo-Codes: General Principles and Applications", Proc.

6th Tirrenia WS on Dig. Comm., Tirrenia, Italy, 1994, pp. 215-226.

S. Lin, D. Costello, ,,Error Control Coding", Prentice Hall, NJ 1983.

L. R. Bahl, J. Cocke, F. Jelinek and J. Raviv, ,,Optimal decoding of linear codes for

minimizing symbol error rate", IEEE Trans. on Inform. Theory, IT-20, pp. 284-287,

March 1974.

J. Hagenauer, L. Papke, ,,Decoding 'TURBO'-codes with the soft output Viterbi

algorithm (SOVA) ,,, Proc. 1994 IEEE Int. Sym. Inform. Theory, Trondheim,

Norway, 1994, p. 164.

J. Hagenauer, L. Papke and P. Robertson, ,Iterative ('TURBO') Decoding of

Systematic Convolutional Codes with the MAP and SOVA Algorithrns",Submitted

1TG 1994 Conf., Frankfurt, October 1994, pp.21-28.

P. Robertson, ,,Illuminating the Structure of Code and Decoder of Parallel

Concatenated Recursive Systematic (TURBO) Codes", IEEE GLOBCOM, 1994,

pp. 1298-1303.

O. Joerssen, H. Meyr, ,,Terminating the trellis of turbo-codes", Electron. Lett.,

1994, 30, pp. 1285-1286.

A. S. Barbulescu, S. S. Pietrobon, ,,Terminating the trellis of turbo-codes in the

same state", Electron. Lett., 1995, 31, pp. 22-23.

J. B. Cain, G. C. Clark Jr. and J. M. Geist, ,,Punctured Convolutional Codes of Rate

(n-1)/n and Simplified Maximum Likelihood Decoding", IEEE Trans. on Infrom.

Theory, 1979, 25, pp. 97-100.

P. Jung, M. Nasshan, ,,Dependence of the error performance of turbo-codes on the

interleaver structure in short frame transmission systems", Electron. Lett., 1994, 30,

pp. 287-288.

[121

[13]

[14]

[15]

[16]

[17]

P. Jung, M. Nasshan, ,,Performance evaluation of turbocodes for short frame

transmission systems", Electron. Lett., 1994, 30, pp. 111-113.

J. L. Massey, ,,Coding and Modulation in Digital Communication", Zurich Seminar,

Zurich, 1974.

J. D. Anderson, ,,The TURBO Coding Scheme", Report IT-146 ISSN 0105-854,

1994, Technical University of Denmark, Lyngby.

A. J. Viterbi and J. K. Omura, ,,Principles of Digital Communication and Coding",

New York, McGraw Hill Book Co., 1979

F. Jessie MacWilliams, Neil J. A. Sloane, ,,Pseudo-Random Sequences and Arrays",

Proceedings of the IEEE, Vol 64, No. 12, December 1976

W. Press, S Teukolsky, W Vetterling, B. Flannery, ,,Numerical Recipes in C",

Cambridge Press, 1992

Appendix B - Simulation results

Bit error rate of Turbo Codes with different interleaver sizes

Interleaver size: 65536, Generator polynomials (37,21), Memory order: 4

1.E-1

1.E-2

1.E-3
I¢
ttl
ID

1.E-4

1.E-5

1.E-6

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

F_b/No [dB]

Interleaver size: 16384, Generator polynomials (37,21), Memory order: 4

ttl
m

1.E-1

, F ,, i _" '-----_

0.0 0.5 1.0

- _ 10 Iterations

............... _ __......; • 18 Iterations

1.5 2.0 2.5 3.0 3.5

Eb/No [dB]

Interleaver size: 1024, Generator polynomials (37,21), Memory order: 4

1.E-1

"-,.,1 Iteration ak _''_

m 1.E-3 _2 Iterationsan

3 Iterations ""', _,

1.E-4_:.- 6 Iterations i _'_ ;_:_'_

10 Iterations "%. ",, _!::

18 Iterations . i , :__;,:_ _...:::_
1.E-5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

F_b/No [dB]

Interleaver size: 400, Generator polynomials (37,21), Memory order: 4

1.E-1

1.E-2

ri-
m 1.E-3
m

1.E-4

1.E"5

0.0

+ 1 Iteration _'-,K!\\ ?_'m

+ 2 Iterations ::_:::_: :''_:_,N : _

_ 3 Iterations _"

•---.:+...6 Iterations
_.=

= + 10 Iterations

+ 18 Iterations
_!

' '",L

• ,,i

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Eb/No [dB]

Simulations with quantization

All simulations are done with an interleaver size of 400 and the generator

polynomials (37,21).

Quantization levels: 4 (Equal spaced)

1.Eol

1.E-2

n-
m 1.E-3
m

1.E4

1.E-5

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Eb/No [da]

Quantization levels: 16 (Equal spaced)

1.E+0

1.E-1

1.E-2
tl-
ILl
m

1.E-3

1.E-4

1.E-5

0.0 0.5 1.0 1.5 2.0

F.b/No [dB]

2.5 3.0 3.5

Appendix B

On the Free Distance of Turbo Codes

and Related Product Codes

ZOr/ch
=.Hochschule

Ecolepolytechnique ft_ddralede Zurich
Politechnicofederale diZurigo

SwissFederal Institute of TechnologyZurich

Signal- and Information Processing Laboratory

ProF.. Dr. James L. Massey

On the Free Distance of TURBO Codes

and Related Product Codes.

Jan Seghers

Professors:

Pro£ Dr. James L. Massey

Prof. Dr. Daniel J. Costello, Jr.

Prof. dr. ix. Marc Moeneclaey

Advisors:

Dr. Lance C. Perez

Beat Keusch

Jossy Sayir

Diploma Project SS 1995

Nr. 6613

Acknowledgements

\

The realisation of this project indebted me to many people.

I am especially thankful to Dr. Lance Perez, my first advisor. He has shown great patience

introducing me to error control coding. His enthusiasm has stimulated me during this

project. I have enjoyed the many discussions we had.
I thank Beat Keusch and Jossy Say[r, my co-advisors. I value their comments on my work

very high. They have also introduced me to the 'ISI-world' and solved many practical

problems.
I am also indebted to Prof. Dr. Daniel CosteUo for his interest in my work and his useful

comments.

I am grateful that I had colleagues like Guido Meyerhans and Dieter Arnold, who have

implemented the Turbo Coding scheme in their semester project. It was through their
efforts that I was able to obtain the simulation results published in this report.

Last, but not least, I thank Prof. dr. it. Marc Moeneclaey of the University of Ghent for

evaluating my work.

Thank you very much,

Zilrich, 17 August 1995.

_ _dgenGssische
Techn[sche Hochschu|e

Z_,ddl

Ecole polytechnique fdddrale de Zurich

Politecnico 1_ederale di Zurigo

Swiss Federal Institute of Technology Zurich

instRut f_r Signal- und Inforrna tionsverarbeitung

Prof. Dr. J.L. Massey

Gl_'iastJ-dSse 35

DurchwahI-Nr. 01/632 5192
TelefonzentJ-ale 01/632 2211

Postadresse: ETH-Zentrum
8092 Z_rich

Abt. III.B

Sommersemester 95

Dr. Lance C. Perez

Jossy Sayir

Beat Keusch

Diploma Project

for Jan Scghers

On the Free Distance of TURBO Codes and

Related Product Codes

1 Introduction

In 1993, Berrou, Glavieux, and Thitimajshima [1] stunned the coding community with their

announcement of a coding technique, which they called _TURBO Codes", that came within

0.7 dB of the Shannon limit for the additive white Gaussian noise channel used with a spectral

efficiency of 0.5 bits per dimension. These claims were initially viewed with some skepticism,

but subsequent research [2l,[3] has verified the performance of this new coding scheme. TURBO

codes and similar schemes are now an active research area throughout the world.

The TUP_O Code utilizes a parallel concatenation of two identical punctured convolu-

tional codes, whose encoders are realized in systematic feedback form, and a complex inter-

leaving/deinterleaving scheme. The use of punctured systematic codes reduces the complexity

of the decoder and allows higher spectral efficiencies to be achieved. The interleaver and dein-

terleaver serve two purposes. First, they perform the traditional role of redistributing and

decorrelating the bursty errors out of the decoder. Second, they insure that both encoders do

not simultaneously output low weight code sequences.

This encoding scheme is used in conjunction with an iterative decoding technique based on

a modified version of the mazirnum a posteriori (MAP) algorithm introduced by Bahl, et. al.

[4]. The MAP algorithm is used because it naturally produces reliability information about its

decoding decisions. This %oft" information can then be used in the next iteration of decoding.

t.._

It is now widely believed that the primary contribution of Berrou et. al. [1], is the decoding

algorithm and not the encoder structure.

Though the performance of the TURBO code has been reproduced, several fundamental

questions concerning their performance and structure remain. The goal of this project is to

address some of these questions, enumerated below, and to develop a general framework in

which the properties and performance of TURBO codes can be easilyunderstood. To assist

you in thisundertaking, you willhave access to a computer simulation program for TURBO

codes that isbeing written in a concurrent semester project. This program isto be used as an

experimental tool to testand verifyyour hypotheses and conclusions,not simply to generate

performance curves

2 Tasks

,

.

,

,

5.

Familiarize yourself with the literature on TURBO codes and prepare a short, informal

presentation on the state of the art.

Find the free distance of the TURBO code. This may be done by developing an appro-

priate computer algorithm or by analytical methods, but the answer must be exact.

Develop a relationship between the interleaver structure and the free distance of TURBO

codes.

Examine and discuss the relationship between TuRBo codes and product codes.

Explain the performance of the TURBO code in terms of its distance properties. In

particular, the effect of iterated decoding and the presence of the error floor [2] should be

addressed.

,

,

Determine a meaningful measure of the decoding complexity of the iterated MAP algo-

rithm. Use this measure to make an intelllgent performance versus complexity comparison

between TURBO codes and other complex coding schemes.

Construct alternative coding schemes to the TURBO code. The program being developed

in the semester project may be used to simulate these codes.

References

[I] C. Berrou, A. Glaieux, and P. Thitimajshima, "Near Shannon limiterror-correcting coding

and decoding: TURBO codes," Proc. ICC'93, Geneva, Switzerland, 1993, pp. 1064-1070.

[2] J. D. Andersen, "The TURBO coding scheme," Report IT-146, Technical University of

Denmark, June 1994. :::_

2

[3] J. Hagenauer and L. Papke, "Decoding 'TURBO'-codes with the soft output Viterbi algo-

rithm (SOVA)," Proc. 1994 [EEE Int. gym. Inform. Theory, Trondheim, Norway, 1994, p.

164.

[4] L. tL Bahl, J. Cocke, F. Jelinek, and J. Raviv, _Optimal decoding of linear codes for

minimizing symbol error rate," IEEE Trans. o, In�arm. Theory, YI'-20, pp. 284-287, March
1974.

3 Allgemeine Bestimmungen

Ca. 1 Woche vor Abgabedatum mfissen sie einen 15-Minutigen Vortrag fiber lhre Arbeit haltea.

Der Bericht ist in zwei ExempIaren abzugeben. Beide Exemplare mfissen unterschrieben

sein. Das Original bleibt Eigentum des Instituts.

Ausgabe:

Abgabe:
Dienstag, 18. April 1995, ab 08.00 im ETZ F88

Donnerstag, 17. August 1995, bis 12.00 im ETZ F88

Z_ri_, den 7. ApriI 1995

Prof. J.L. Massey

3

Abstract

It is the goal of this project to explain the performance of Turbo Codes. An algorithm for

determining the free distance of Turbo Codes is proposed and applied to a few examples.

The origin of the error floor is explained. The method of random interleaving is corrected

and extended to punctured Turbo Codes. The distance spectrum of Turbo Codes is inves-

tigated using random interleaving. A theory is developed that explains the performance of

Turbo Codes. The decoding complexity of Turbo Codes is reviewed. Constituent encoder

optimization and interleaver design are discussed.

Chapter 1: Introduction to Turbo Codes introduces the Turbo Code's performance and

the Turbo Coding scheme.
Chapter 2: The Free Distance of Turbo Codes presents an algorithm to calculate the free

distance of a Turbo Code. This algorithm is applied to a few examples. The origin of

the error floor is identified. The problem of interleaver design for optimal free distance is

formalized.

Chapter 3: The Distance Spectrum of Turbo Codes explains how the distance spectrum

determines the Turbo Code's performance. In a first analysis, the influence of the inter-

leaver on the distance spectrum is shown. The method of random interleaving is corrected

and extended to punctured Turbo Codes. Theoretical results are derived that show how

the distance spectrum changes as the interleaver size increases. A theory is proposed that

relates the Turbo Code's performance to its distance spectrum.

Chapter 4: The Decoding Complexity of Turbo Codes reviews the decoding complexity.

The decoding complexity of a Turbo Code is compared to the decoding complexity of a

convolutional code with Viterbi decoding.

Chapter 5: Improvements for Turbo Codes discusses constituent encoder selection and

interleaver design. The good performance of Turbo Codes with maximum cycle length

constituent encoders is explained.

Chapter 6: The Relation Between Turbo Codes and Product Codes

Chapter 7: Conclusions

Contents

1

2

3

Introduction to TURBO Codes. 1

1.1 The Turbo Code's performance 1

1.2 The coding scheme 3

1.3 Recursive systematic convolutional encoders 5

1.4 The MAP algorithm 5

The

2.1

2.2

2.3

Free Distance of TURBO Codes. 7

Introduction 7

An algorithm for determining the free distance 8

2.2.1 Theory 8

2.2.2 Implementation 11

The free distance for a pseudorandom interleaver 12

2.3.1 Problem description 12

2.3.2 Application of the algorithm 12
2.3.3 Results 14

2.4 The free distance for a rectangular interleaver 16

2.4.1 Problem description 16

2.4.2 Application of the algorithm 16

2.4.3 Results 17

2.5 Turbo Code versus convolutional code 20

2.6 The parity-check matrix of a Turbo Code 21
2.6.1 Intentions 21

2.6.2 The parity-check matrix 21

2.6.3 The parity-check matrix of a Turbo Code 21
2.7 Conclusion 23

The

3.1

3.2

3.3

3.4

Distance Spectrum of TURBO Codes. 25
Introduction 25

A first analysis: an ideal interleaver 26
3.2.1 Intention 26

3.2.2 A necessary proof. 26

3.2.3 The ideal interleaver 28

The principles of random interleaving 28

Random interleaving extended 31

V

vi CONTENTS

3.4.1 Extension to non-terminating paths 31

3.4.2 Extension to punctured codes 32

3.4.3 Calculating a few terms of the average distance spectrum 34

3.5 The effect of increasing the interleaver size on one term of the distance

spectrum for average Turbo Codes 34

3.5.1 A property of recursive convolutional codes 34

3.5.2 Increasing the interleaver size for average Turbo Codes 35

3.5.3 One term of the distance spectrum 37

3.6 The free distance of an average Turbo Code 38

3.6.1 Theory. 38

3.6.2 An example 39

3.7 Spectral thinning for increasing interleavers 41
3.7.1 Intentions 41

3.7.2 Theoretical evidence for spectral thinning 41

3.7.3 Empirical evidence for spectral thinning 42

3.7.4 A theory of spectral thinning 44
3.8 Conclusion 45

4 The

4.1

4.2

4.3

4.4

Decoding Complexity of TURBO Codes. 49
Introduction 49

The decoding complexity. 49
Turbo decoders versus Viterbi decoders 50

Conclusion 52

Improvements for TURBO Codes. 53
5.1 Introduction 53

5.2 Constituent encoder selection 53

5.3 Interleaver design 55
5.4 Conclusion 56

6 The Relation Between TURBO Codes and Product Codes. 59

T Conclusions. 61

Bibliography 63

Chapter 1

..-q

Introduction to TURBO Codes.

1.1 The Turbo Code's performance.

-!

In [1], Berrou et al. claim to have build a code that comes within 0.7 dB of the Shannon
limit for the additive white Gaussian noise channel used with a spectral efficiency of 0.5

bits per dimension. Since these results were first published, several research groups have

been able to verify this performance [5], [6]. Figure 1.1 shows simulation results for a
Turbo Code with constituent encoder and puncturing pattern as defined in [11, and a 64K

pseudorandom interleaver. These simulations were performed at this institute by Arnold

and Meyerhans [18]. Their results confirm the claim made by Berrou et al: Only a signal

to noise ratio of 0.7 dB is required to obtain a bit error rate of 10-5.

Performance curves of Turbo Codes show a typical shape, which is unlike that of any other

code. First, their is a rather flat part for moderate signal to noise ratios. In the literature

[5], this part of the performance curve has been labeled as the 'error floor'. Below a certain

signal to noise ratio, the steepness of the curve suddenly increases. It is the combination
of the error floor and the drastic increase in steepness that puzzles the coding community.

In order to appreciate the performance of Turbo Codes, the Turbo Code's performance is

compared to that of a (2,1,14) convolutional code with Viterbi decoding. This convolu-
tional code was build for use on the Galileo space probe and has a free distance of eighteen,

see [19]. At a bit error rate of 10-5 the Turbo Code offers a coding gain of approximately

2 dB compared to this complex convolutional code.

Figure 1.2 shows how the performance of Turbo Codes evolves as the interleaver size
increases. These Turbo Codes consist of the same constituent encoders and puncturing

pattern as the code mentioned above. The interleavers are pseudorandom and of sizes:

100, 400, 1024. Two effects call the attention: As the interleaver size increases, the error
floor shifts downward and dominates the performance down to lower signal to noise ratios.

The combination of these effects causes the performance curve to grow steeper as the

interleaver size increases.

It is the goal of this project to explain these effects.

2 1. INTRODUCTION TO TURBO CODES.

lo"

m.
uJ
m

10.4

104

10-¢

10

J+ Tu_oOode.. J

0.5 1 1.5 2 2.5
Eb_No (de)

Figure 1.1: The performance of a Turbo Code compared to the performance of a (2,1,14)

convolutional code with Viterbi decoding.

p

I

10 "1 ,

(

lO-,z

zl0 "

10.4

10

x N11024

1.5 2 2.5 3 3.5

Eb_o CriB)

Figure 1.2: The performance of Turbo Codes for increasing interleaver size.

$

i

L

1. INTRODUCTION TO TURBO CODES. 3

Source Encoder _-_ Channel _-_ Decoder

Figure 1.3: The Turbo coding scheme.

I01...01 _ RSC I

Inter- 1
leaver

[J RSC2 ____[p Puncturer Serializcr

dt _1

Figure 1.4: The Turbo encoder with puncturing pattern as in [1].

To modulator

1.2 The coding scheme.

Figure 1.3 shows a block diagram of the Turbo coding scheme. The source emits a block of
information bits with block length N. This information block is encoded and transmitted

over a binary input additive white gaussian noise channel. The Turbo decoder produces

estimated values for the information bits

The encoder and decoder are now separately discussed.

The Turbo encoder, see Figure 1.4, is a parallel concatenation of two recursive system-

atic convolutional encoders, called the constituent encoders. The information block, which

has a finite length, is encoded by the first constituent encoder, but interleaved before it
enters the second constituent encoder. Note that the interleaver operates on an informa-

tion sequence, and not on a code sequence. The interleaver size equals the information

block length. The output of the constituent encoders is punctured to increase the spectral

efficiency.

In [1l, Berrou et al. propose constituent encoders with generators (37,21). The systematic

output of the second encoder is completely punctured. On even time steps the parity bit
of the second encoder is punctured, on odd time steps the parity bit of the first encoder.

This puncturing pattern leads to a rate of ½ for the Turbo Code.

Berrou et al. have used pseudorandom 64K interleavers for their simulations. A pseudoran-

dom interleaver is randomly generated, but then used unaltered throughout the encoder's

operation.
Berrou et al. do not mention how the constituent encoders are terminated. Since the

encoders are recursive, it does not suffice to set the last M information bits to zero in
order to drive the encoder back to the all zero state. The necessary termination sequence

depends on the state of the encoder at the moment that the termination is to begin. Note

4 I. INTRODUCTION TO TURBO CODES.

{ Ik :

From demodulator] Multiplexer _ M_

Wok Deinter- v_

leaver

Y21

[n_r-

Lcaver

Deinter-
leaver

Figure 1.5: The Turbo decoder with puncturing pattern as in [1[.

L

that, in general, driving the first encoder to the all zero state does not terminate the
second encoder. This is due to the interleaver. It has become a standard approach in the

literature [3] that the first encoder is terminated, and the trellis of the second encoder is

simply 'left open'.

The encoder is used in conjunction with a suboptimal iterative decoding scheme based

on a modified version of the maximum a posteriori (MAP) algorithm introduced by Bahl

in [4], see Figure 1.5. The MAP algorithm is used because it produces reliability informa-

tion about its decoding decisions.
A MAP decoder has two inputs: the channel output and the a priori probabilities for the

information bits. Its output consists of the a posteriori probabilities for the information

bits.
For the first iteration, the a priori probabilities w_ entering the first MAP decoder are set

to 0.5. After interleaving, the a posteriori probabilities wlk produced by the first MAP
decoder are fed into the second MAP decoder as a priori probabilities wll. The second

MAP decoder, however, does not output the a posteriori probability, but a slightly modi-

fied quantity called the extrinsic information. The calculation of the extrinsic information

is almost identical to that of the a posteriori probability. When the a posteriori proba-

bility is calculated for bit dk with the a priori probability of dk set to 0.5, the extrinsic
information is obtained. The combination of the interleavers and the extrinsic information

I. INTRODUCTION TO TURBO CODES. 5

Figure 1.6: The (2,1,4) P_SC encoder with generators (37,21), as proposed by Berrou in

[1l.

Q

decorrelates w2k and (xk, yk) so that the iterative decoding is effective. Now the extrinsic

information produced by the second MAP decoder enters the first decoder as a priori prob-

ability. From the second iteration on, both decoders produce the extrinsic information.

In this way, also wll and Y21 are decorrelated. After the last iteration, the second MAP

decoder produces the a posteriori probabilities app_ that are used to make a hard decision
about the values of the information bits. In practice, the extrinsic information exchanged

between the MAP decoders is in the log-likelyhood ratio form, see Section 1.4.

For the simulations in [11, eighteen iterations are used. All the simulation results in this

report are obtained with eighteen decoding iterations.

Note that none of the Turbo Code's components are new. The MAP algorithm was

presented already in 1972. Iterative decoding was introduced in 1954 by Elias in [17].

1.3 Recursive systematic convolutional encoders.

The constituent encoders of Turbo Codes are convolutional encoders in systematic feed-

back form. Figure 1.6 shows the constituent encoder proposed by Berrou et al. in [1]. The

generator sequence is (37,21). The first number, 37, defines the feedback path, the second

number, 21, defines the forward path.

1.4 The MAP algorithm.

The MAP algorithm, introduced by Bahl in [4], calculates the a posteriori probabilities
of the states and transitions of a Markov source observed through a discrete memoryless

channel. Bahl applied the algorithm to terminated feedforward convolutional codes. In

[1], Berrou modified the algorithm for recursive convolutional codes. The treatment of

the MAP algorithm that gives the best insight for use with Turbo Codes is published by

Andersen in [51. Only the results are stated here:

6 I. I1VTRODUCTION TO TURBO CODES.

The recursive systematic convolutional encoder has 2 M states St (M is the memory of

the encoder), input dt and output Xt, t = 0,1,..., L. L stands for the information block

length. The encoder starts and ends in the zero state. The output Xt is a function of the

input dt and the previous state St-t. The source is described by the transition probabilities

Pr(St = mlSt-1 = m') that depend on the a priori probabilities for the information bits

dr. The output Xt is observed through a binary input AWGN channel. The output of the

channel is Y_.

The following quantity is defined:

_/t(m', m) = Pr(St = m; YtlSt-1 = m')

= Pr(St = mist-1 = rn')- Pr(Y_IS_ = m; St-1 = m')

- Pr(dt = i; Yt]St-I= m')

=

_(m _, i) can be calculated using the a priori probabilities of the information bits and the

probability density function p(Yt]Xt). Now the quantity at(m) = Pr(St = m; Y_) can be

calculated by the forward recursion:

•-rt_l (m0, 0) + c_-1 7_-1(ml, 1) t(m) = ' ' ' '

using the starting conditions so(0) = 1, and c_0(m) = 0, m = 1, 2,..., 2M - 1. In general,

Yab stands for the sequence Ya, Ya+I,..., Yb-1, Yb. The state leading to rn with input i is
!denoted m i.

The quantity _(m) = Pr(Y_L+IlSt = m) can be calculated as a backward recuzsion:

! t77Z? 1 x

with the boundary conditions fit(0) = 1, and _3r.(m) = 0, m = 1, 2,..., 2 M - 1. The state

obtained from m ! with input i is denoted rod.

Then the quantity at(m I, m) = Pr(St-1 = m!; St --- m; yL) can be calculated as:

=
7Tlt _-

=

where the function CCm_, i) gives the new state when the old state is m ! and the input

dt_i.

The log-likelyhood ratio is then defined

A(de) = log

= log

= log

as:

Pr(dt = l[observation)

Pr(dt OIobservation)

Pr(dt = 1; observation)

Pr(dt = 0; observation)

Chapter 2

The Free Distance of TURBO

Codes.

2.1 Introduction.

An important characteristic of every code is its free distance. For large enough signal to

noise ratios, the free distance will dominate the code's performance. Therefore, it makes

sense to start the analysis of Turbo Codes by determining their free distance.

The project description asks to find the free distance of 'the' Turbo Code, thereby refering

to the code that was introduced by Berrou et al. in [1]. However, this paper defines 'the'

Turbo Code in an ambiguous manner. The exact form of the interleaver and the way the

constituent encoders are terminated are not mentioned. As can easily be shown, both
have an effect on the free distance of the code.

The interleaver used to obtain the simulation results ifi [1] is a pseudorandom interleaver.

This means that it is generated randomly and then used unaltered throughout the simu-

lation. An example of how the interleaver influences the free distance will be given later

in this chapter.
It is not that obvious that the termination of the constituent encoders influences the free

distance. Consider a Turbo Code with a rectangular interleaver and the constituent en-

coders chosen as in [1]. 'Rectangular' means that the information sequence is written

linewise and read colummwise, as is the case for interleavers used to decorrelate decoding

errors in serial coding schemes. In the event that none of the encoders is terminated, the

free distance cannot be bigger than two. The information sequence consisting of all zeros

and a single one in the last bit position is interleaved to itself. Thus, only in the last time

step of the encoding will this single one cause a deviation from the all zero state in the

trellises of both encoders, which results in a weight two codeword. Now, assume that the

last four bits of the information sequence are used to terminate the first encoder. Then, the

codeword weight cannot be smaller than the free distance of the first constituent encoder,

which equals four after puncturing. Thus, the termination influences the free distance of
a Turbo Code.

For the reasons mentioned above, it is not possible to find the free distance of 'the' Turbo

Code as mentioned in task two of the project description. Nevertheless, in this chapter, an

8 2. THE FREE DISTANCE OF TURBO CODES.

F.._c.e_tl

_2

w w

1ol, lotollt, lojotololololo!,l°lol lol°!°t'!°l°]

Iolol, tololololo1 1olo1 1°1' Iolol01 to!o!olol

Figure 2.1: The creation of a codeword. The information sequences causing the completed

detours in the first encoder are printed bold.

algorithm to find the free distance will be introduced. This algorithm assumes termination
of the first encoder as was proposed by Robertson in [3]. The algorithm will be applied to

two examples to demonstrate the influence of the interleaver choice on the free distance.
The results will also show how the error floor is caused by the free distance.

At the end of this chapter, the problem of interleaver design for maximizing the free dis-
tance will be formalized and mathematically defined. The approach will be to develop a

parity-check matrix for a Turbo Code. This approach shows the influence of the interleaver
on the basis vectors of the code.

Finally, in the conclusion, a comparison will be made between the work on the free distance

presented in this report and the results of Robertson in [31.

2.2 An algorithm for determining the free distance.
\

2.2.1 Theory.

An important characteristic of the Turbo Code is its block length N. The most straight-

forward way to find the free distance of this code is to encode all possible information
blocks and record the smallest codeword Hamming weight. For any practical values of N,

however, the number of information blocks, 2Iv, is just too high to make this calculation.

It is the goal of this algorithm to focus only on those information blocks that could pos-

sibly cause the free distance. The number of information blocks that have to be encoded

to find the free distance will be drastically reduced. The algorithm only requires an upper

bound on the free distance and the termination of the first constituent encoder.

First, an example is presented that shows how a codeword of a Turbo Code is formed.

This example leads to a better understanding of the algorithm that follows. In Figure 2.1,
an information block entering the first constituent encoder is shown. Since the first encoder

2. THE FREE DISTANCE OF TURBO CODES. 9

must be terminated, this information sequence causes a number of completed detours in

the trellis of the first encoder. A 'completed detour' is defined as a path that starts and

ends in the zero state, but does not return to the zero state between its start - and endpoint.
This information block is interleaved before it enters the second constituent encoder. In

general, the interleaved information block will not terminate the second encoder. Thus,

in the trellis of the second encoder, it will cause a number of completed detours, but also

an incompleted detour at the end of the trellis. An 'incompleted detour' is defined as a

path that starts in the zero state, but never returns to the zero state. An incompleted

detour is finite because it stops at the end of the trellis. It is therefore possible that

the free distance is caused by multiple detours in both constituent encoders, including an

incompleted detour in the second encoder.

Every detour in the trellis of an encoder is caused by a unique information sequence

that has the same length as the detour. In the example above, there are two completed
detours in the trellis of the first encoder. Therefore the information block has to contain

the information sequences that cause these detours. Before, between, and after these

sequences, the information block can contain only zeros since the encoder stays in the zero

state at these locations. One could say that these sequences are 'embedded in zeros'. By

'embedded in zeros' it is meant that the bit positions before the first sequence, between

two consecutive sequences, and after the last sequence, all contain a zero bit.
Consider an information block that terminates the first encoder: it causes n completed

detours in the trellis of the encoder. This information block has to contain the n sequences

that cause these detours. These n sequences are embedded in zeros.

Consider n information sequences that each cause one completed detour in the trellis of
the first encoder. An information block that consists out of these n sequences embedded

in zeros, causes the corresponding detours in the trellis of the first encoder. Since all these

detours are completed, the information block terminates the first encoder. This implies

the following result:

Lemma 1 Given is a Turbo Code with block length N and a terminated first constituent

encoder. Let S be the set of all information sequences that cause a completed detour, with

length smaller than or equal to iV, in the trellis of the first constituent encoder. Every

information block terminating the first constituent encoder consists of elements of S em-

bedded in zeros. But also: Every information block of length N that consists of elements

of S embedded in zeros, terminates the first constituent encoder.

This lemma _ves a method to construct all information blocks that terminate the
first constituent encoder of a Turbo Code. This task is equivalent to determining all

information blocks that consist of elements of S embedded in zeros. Notice that a certain

element of S may appear more than once in such an information block. The sum of the

lengths of the elements of S that such an information block contains, has to be smaller

than the blocklength N. The combined Hamming weight that such an information block

causes in the first encoder, is the sum of the weights of the detours that it causes.

To determine all the information blocks terminating the first encoder, the following steps

are taken:

• Determine the set S of all information sequences that cause a single completed detour

in the trellis of the first encoder and whose length is smaller than or equal to N.

I0 2. THE FREE DISTA_ICE OF TURBO CODES.

• Determine alldifferentcombinationsof elementsof S such that a combination may

containa certainelementmore than once,and the sum ofthe lengthsofthesequences

thata combination contains,issmallerthan or equal to N.

• For each combination found in the previousstep,determine allinformationblocks

that contain the sequences of the combination by embedding these sequences in

zeros.

This lemma is now used to focus only on those information blocks that could possibly

cause the free distance. Therefore an upper bound on the free distance is needed. Such an

upper bound can be obtained in three ways: a guess, a good guess relying on simulation

results, or an analytically derived bound.

Only the information blocks that cause an output Hamming weight in the first encoder

that is smaller than or equal to the bound, can cause the free distance of the Turbo Code.

Thus, only those information blocks have to be considered that consist of elements of S

such that the sum of the weights of the detours that correspond to these elements, is

smaller than or equal to the bound. This requirement immediately eliminates all elements

of S causing a weight bigger than the bound.
The total output weight caused by an information block is given by the sum of the weights
caused in each constituent encoder. When an information block is assembled using the

method above, the output weight it causes in the first encoder, is the combined output

weight of its detours. The output weight for this information block in the second encoder

can be determined by simply encoding it with the second encoder.

These considerations lead to the following algorithm:

1. Determine an upper bound on the free distance.

2. In the trellis of the first constituent encoder search all information sequences such

that each sequence generates one completed detour with output weight smaller than

or equal to the bound, and length not bigger than the blocklength N.

3. Determine all different combinations of sequences found in step 2. A combination

may contain a certain sequence more than once. The sum of the lengths of the

sequences that a combination contains, is smaller than or equal to N. The sum of

the output weights that the sequences of a combination cause, is smaller than or

equal to the bound on the free distance.

4. For each combination found in step 3, assemble all possible information blocks of

length N that contain the sequences of the combination by embedding these se-

quences in zeros.

5. Interleave all information blocks from step 4, encode the resulting sequences with the

second constituent encoder, and record the additional output weight in the second

encoder. If the total output weight is smaller than the bound, the bound takes on

this new value and the process continues.

6. The final value of the bound is the free distance of the Turbo Code.

2. THE FREE DISTANCE OF TURBO CODES. 11

The complexity of the algorithm strongly depends on the upper bound for the free distance.

The number of sequences, found in step 2, increases exponentially with this bound and

so does the number of information blocks to consider in step 4. The number of possible

information blocks further depends on the block size N and the puncturing period, but

only in a polynomial fashion.

Note that when the output of a constituent encoder is punctured, a detour can cause

different output weights depending on its starting position in the trellis. The starting

position of a detour in the trellis determines how its output sequence is punctured. A

sequence may therefore appear multiple times in S with a different output weight. Thus

when information blocks are assembled also the puncturing has to be taken into account

to determine the output weight this block produces in the first encoder.

2.2.2 Implementation.

The algorithm is implemented in two ANSI-C programs:

The program 'pathfind' calculates all the sequences causing completed detours in the trellis
of the first constituent encoder, with output Hamming weight smaller than or equal to

the upper bound on the free distance. Also the puncturing is taken into account. The

program requires the following input:

• The generators of the first constituent encoder.

• The puncturing pattern.

• The upper bound on the free distance.

• An upper bound on the input weight, which proved useful in the case of a rectangular

interleaver, see Section 2.4.

• Name of the output file.

The following output is produced:

• Status files.

• An output file containing a list of the found sequences, including:

- Input weight.

- Output weight.

- Be_nning of the sequence relative to the puncturing period.

- The location of the ones in the sequence.

The output of _pathfind' is then used to calculate the free distance in the program 'freedist'.

'freedist' assembles all possible information blocks and encodes them in the second encoder

after interleaving. In order to function efficiently, it starts encoding the interleaved block

at a depth in the trellis corresponding to the location of the first one. Up to that point,

no weight has been accumulated. The encoding lasts until the sum of the weight caused in

the first encoder and the accumulated weight in the second encoder exceeds the bound, or

12 2. THE FREE DISTANCE OF TURBO CODES.

until the end of the trellis is reached. In the second case a codeword with weight smaller

than the bound has been found.

'freed/st' requires the following input:

• The file produced by 'pathfind' containing the sequences for the first encoder.

• The upper bound on the free distance.

• The generators for the second encoder.

• The puncturing pattern.

• The interleaver.

• The name of the output file.

The output of 'freedist' is a file containing the free distance and the information blocks

that lead to free distance codewords.

As mentioned in Section 2.2.1, the complexity of the algorithm primarily depends on the

upper bound for the free distance. This is reflected in the calculation time for both pro-

grams and the memory requirement to store the sequences found by 'pathfind'. Therefore,

if the expected free distance becomes too large, the algorithm becomes unpractical.

2.3 The free distance for a pseudorandom interleaver.

2.3.1 Problem description.

In this section, the free distance algorithm is applied on a Turbo Code with a 64K pseudo-

random interleaver. The component encoders and the puncturing pattern are chosen as

in [1]. The first encoder is terminated using the last four bits of the information block.

2.3.2 Application of the algorithm.

The free distance of the unpunctured constituent encoder is six and caused by the infor-

mation sequence 100001. When the output is punctured, the same sequence generates
the free distance of the punctured first encoder: four. Therefore, the free distance of the

Turbo Code has to be at least four. This weight is also caused in the first encoder by

the sequences 10000000001 and 1100011 when these sequences start at odd locations in
the trellis. This is illustrated in Table 2.1: The output weight that these input sequences

produce depends on the constituent encoder and the parity of the position where they

begin in the trellis. Note that the free distance of this Turbo Code could be as small as

four: the output weight of the input sequence 1100011 can be completely punctured away

in the second encoder.

For these reasons the expected value for the free distance was first set to four and then

increased to five and six.

2. THE FREE DISTANCE OF TURBO CODES. 13

• i

Input

sequence

Output Encoder 1 I Encoder 2

sequence even I odd I odd I even

1 1 1

0 0 1

0 0 0

0 0 0

0 0 1

1 1 1

111XXIXX
OXOlOX_1
ooo¢¢o¢¢
o¢oo¢¢_o
o_oX¢l_X
1XIIXXXI

Input

sequence

Output

sequence

1 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 1

1

1

0

0

1

0

1

0

0

1

1

Encoder 1 Encoder 2

even I odd odd I even

111X_IXX
oXoI_;_1
ooo0¢o_¢
o¢oo¢¢_o
OlO;_l_X

o_oo0¢_o
OlOX_l_;
o¢oo_o
ooo¢¢o_¢
OXOl_X_1
I11XXIXX

Input

sequence

Output Encoder 1 I Encoder 2

sequence even I odd] odd I even

1 1

1 1

0 0

0 0

0 0

1 1

1 1

1

0

1

0

1

0

1

IlIXXIXX
I¢IoXCXo
olox¢ICX
o¢oo¢¢¢o
OlOX_l_X
I_IOX_Xo
IIIXXIXXI

Table 2.1: This table shows the systematic and parity output sequences of a (37,21) RSC

encoder for three input sequences. For a Turbo Code with puncturing pattern as defined

in [1], the effective output sequence depends on the constituent encoder and the begin

position (even or odd) of the input sequence in the information block: the erased bits are

punctured.

14 2. THE FREE DISTANCE OF TURBO CODES.

2.3.3 Results.

The freedistancewas determined to be six,and thereare threecodewords of thisweight.

Their informationblocksare depictedin Figure 2.2.They allconsistof an information

sequence ofweight two interleavedto a similarsequence.

In Figure2.3,simulationresultsforthisTurbo Code are shown, togetherwith the free

distanceasymptote.

This freedistanceasymptote isthe freedistanceterm of the union bound forblock

codes and a binary inputAWGN channel:

o0 N w I .erfc • (2.1)

d.._-dlree w=l

The symbols in thisformulastand for:

Pb The biterrorrate.

d The codeword weight.

w The information weight.

a(w, d) The number of codewords with information weight w and codeword weight d.

N The blocksize or, equivalently, the interleaver size.

R The rate of the code.

Eb/No The signal to noise ratio per information bit.

For the free distance asymptote:

3- 6553-----_"2 "

Note that,seeFigure2.3,the freedistanceasymptote isresponsibleforthe errorfloor

of thisTurbo Code. The reasonforthe flatnessof the errorflooristhat itiscaused by

a small freedistance.For highersignalto noiseratios,however, the 'floor'willdisappear

because the biterrorratedecreasesexponentiallyas a functionofthesignaltonoiseratio.

Itisimportant fortheperformance ofthisTurbo Code thatthe number ofthe freedistance

codewords be small.This leadsto a small effectivemultiplicity:

N

w=].

ofthe freedistanceterm ofthe union bound. The reasonwhy the freedistanceasymptote

determines the performance at low signalto noiseratioswillde discussedin Chapter 3.

2. THE FREE DISTANCE OF TURBO CODES. 15

°..

'- 27157 27167

.....IoI_IoIoIoIoIoIoIoioIoI_IoI

.....IoI_IoIoIoIolo IoIoIoIoI_IoI.....

56403 _ _ 56408

.....IoI_IoIoIoIo _IoI

IoI1IoIoIoIoIoIoIoIoIoI1IoI.....
50876 _

58028 ---"_ 58033

.....IoI_IoIoIoIoI_IoI.....

.....IoIi IoIoIoIoIf IoI.....
4oo25-9 L_ 40030

Figure 2.2: The creation of the three free distance codewords. The information blocks

entering the constituent encoders are depicted. The arrows between the information blocks

symbolize the interleaving. The numbers are the positions in the information block. The

codeword Hamming weight that these information sequences produce can be checked with

Table 2.1: itequals six for each codeword.

16 2. THE FREE DISTANCE OF TURBO CODES.

10 "t

lo"

10 -a

lo"

M4
Cn

10 4

10 4

10 "_

10"40 015

I+ ,_a_on re_lts.
.... Freodmamceasymptot_ 1

r I ; ; ,,,
I 1.5 2 2.5 3

E'bn_(de)

Figure 2.3: The performance of a Turbo Code with 64K pseudorandom interleaver: sim-

ulation results and the free distance asymptote.

2.4 The free distance for a rectangular interleaver.

2.4.1 Problem description.

In this section, the free distance algorithm is applied to a Turbo Code with a 120 x 120

rectangular interleaver. The information block is hence 14400 bits long. The information
bits are written linewise in the interleaver and read columnwise. The component encoders

and the puncturing pattern are chosen as in [11.The first encoder is terminated using the

last four bits of the information block.

2.4.2 Application of the algorithm.

Because of the regular structure of this interleaver, it is possible to find an analytical bound

on the free distance. The information pattern in Figure 2.4 generates a codeword of weight

twelve. This can be verified using Table 2.1. The two horizontal 100001 sequences each

cause outputs of weight four in the first encoder, while the two vertical 100001 sequences

each cause outputs of weight two in the second encoder.
An upper bound of twelve on the free distance leads to 43819 sequences in the trellis of

the first encoder that cause completed detours. However, the number of these detours to

consider for the algorithm can still be decreased, based on the following facts:

• Of all the 43819 sequences for the first encoder, the shortest has a length of 5, the

longest a length of 53.

• For the second encoder the longest possible detour with weight smaller than or equal

twelve, has a length equal to 117. Note that for the second encoder both completed

2. THE FREE DfSTANCE OF TURBO CODES. 17

0

0

io
0

0

0

0

0

0 0 0 0 0

_--o _--o--o_

 oooio
QiO 0 0 0

0 0 0 0

(_ 0 0 0 0

/ -!_--o _-_-

0 0 0 0 0

o o

-I o

qo

-i 0

0 0

Figure 2.4: This input pattern causes a codeword of weight twelve for this Turbo Code

with rectangular interleaver.

and incompleted detours must be considered.

• The interleaver structure and size.

• From the trellis of the encoders, it can be seen that every information sequence

causing a completed detour, starts and ends with a one.

In Figure 2.4, the ones of the two vertical sequences for the second encoder overlap with the
ones of the two horizontal sequences going into the first encoder. In this way, a codeword

is formed with weight twelve.
Now, because the length of the longest sequence to consider is 117 and this is smaller than

the interleaver width of 120, it is impossible for the ones of a single sequence for the first

encoder to overlap with the ones of a single sequence for the second encoder. The ones of

any sequence for the first encoder are at least separated by 5 positions. After interleaving,

they are separated by at least 5 x 120 positions, and therefore no sequence for the second

encoder of length 117 or less can have overlapping ones with the sequence in the first
encoder. As a matter of fact, one can prove that one needs at least two sequences for

both encoders to form a pattern such that the ones overlap. Therefore, only information

blocks that contain two or more sequences for the first encoder can cause free distance

codewords.

Because the bound equals twelve and the free distance is four for the punctured first

encoder, only completed detours with weight up to eight have to be considered for the

free distance algorithm. Considering a detour of weight nine already leads to codewords of

weight thirteen, since there are a minimum of two detours, and the second detour causes

at least weight four.
This reasoning reduces the number of sequences to 274.

2.4.3 Results.

The free distance of this code was found to be twelve. It is caused by the patterns shown

in Figure 2.5.

2. THE FREEDISTANCE OF TURBO CODES. 19

i °

10°

10 "I

10-,z

I0"a
,..n

10-_

104

104

I÷ S_z result_

.... Rim W ass/nlpmte.

fo I to I r05 I 15 2 2.5

E_No (dB}

Figure 2.6: The performance of a Turbo Code with 120 x 120 rectangular interleaver:

simulation results and the free distance asymptote.

It is remarkable that the number of free distance codewords is very high. It is equal

to the amount of times that these patterns fit into the interleaver. The first pattern, for

example, fits (v/-N - 5)- (vrN - 5) times, causing an equal amount of codewords of weight

twelve. Due to the puncturing of 10000000001, which needs to be odd to cause weight two

in the second encoder, the second pattern fits (vZ'N - 5)-(_) times. After similar

considerations for the other patterns,the free distance asymptote is given by:

(•
For N = 14400 this becomes:

4 1 . erfc 12-
28900.1440----6_ iv-_

This is the free distance asymptote drawn in Figure 2.6.

The reason why the free distance asymptote was first derived for N in general is because
it can now be shown that it remains the free distance asymptote as the interleaver size

increases. This follows from the fact that the bound on the free distance does not change

for a larger interleaver: the pattern in Figure 2.4 still gives weight twelve. This means that

the sequences to consider for the algorithm remain the same. The size of the 120 x 120

interleaver is so large that every pattern formed in a larger interleaver can also be assembled
in this interleaver. Therefore no codeword with weight smaller than twelve can be formed

L_

20 2. THE FREE DISTANCE OF TURBO CODES.

/_ ,,a, •
• • ..: "%..

st ", • .

Figure 2.7: At every point of the trellis of a convolutional code, free distance paths start.

in the larger interleaver as it can not be done in the 120 x 120 interleaver. As the size

of the interleaver increases, the free distance asymptote rises and converges toward the

following curve:

4.5- erfc

Comparing to the previous example of a Turbo Code with a 64K pseudorandom interleaver,

the performance for this Turbo Code is worse at moderate signal to noise ratios. At first

this might appear strange because the Turbo Code with rectangular interleaver has a free

distance that is twice that of the Turbo Code with pseudorandom interleaver. However,

the number of the free distance codewords is 28900 with the rectangular interleaver versus

only 3 for the pseudorandom case. It is also interesting that the error floor is not as flat as

that of the pseudorandom interleaver, as shown in Figure 2.6. The slope of the error floor

is determined only by the free distance, not by the number of free distance codewords.

The higher the free distance, the steeper the slope.

2.5 Turbo Code versus convolutional code.

In the previous example of a Turbo Code with a rectangular interleaver, the number of

free distance codewords increases proportionally to the interleaver size N. This results in

a bad performance. Something similar happens when a convolutional code is terminated

and treated like a block code. At every point in the trellis, free distance paths start.

This is illustrated in Figure 2.7. Thus, the number of free distance codewords increases

proportionally to the block size.

The Turbo Code with the 64K pseudorandom interleaver, however, has only three code-
words at the free distance. This effect can not be reached with a convolutional code. The

only way to improve the asymptotic performance of a convolutional code is by increasing

the free distance itself, or decreasing the number of free distance paths starting at a given

point in the trellis. This leads to using complexer convolutional codes with more memory.

2. THE FREE DISTANCE OF TURBO CODES. 21

2.6 The parity-check matrix of a Turbo Code.

2.6.1 Intentions.

In Section 2.2.1, a method has been developed to determine the free distance of a Turbo

Code. The creation of codewords has been explained in terms of detours in the treUises

of both constituent encoders. A free distance codeword is formed when an information

sequence causing a low weight path in the first encoder is interleaved to a similar sequence

for the second encoder. No insight has been given, however, in how to design an interleaver

for maximizing the free distance and for obtaining a _um number of free distance

codewords. An analysis will be presented here that defines the problem mathematically,

giving better insight into the role of the interleaver, and showing the complexity of inter-

leaver optimization.
The approach consists in developing the parity check matrix of a particular Turbo Code.

2.6.2 The parity-check matrix.

In [161, the following method is given to construct a reduced parity-check matrix (the

names of the symbols are changed to avoid confusion):

Theorem 1 Construction of a Reduced Parity-Check Matrix: A reduced parity-check ma-

trix H for an (Z, N) q-ary linear code with l <_ N < Z having an encoding matrix G

(whose rows we denote here by vl, v2, . . . , vlv) can be constructed as follows:

I. Choose vi as any vector in F N \ S(vl, v2,..., vi-1) for i = N + 1, N + 2,..., Z.

g. Form the Z x Z matrix M whose rows are vl,v2,.., , vz.

Then compute the inverse matrix M -1.

3. Take H T as the last Z - N columns of the matrix M -1.

Here F stands for GF(q), and S(vl, v2,..., vi-1) for the vector space spanned by vl, v2, • .., vi-1.

The free distance is then equal to the smallest positive integer d such that there are d rows

of H T that are linearly dependent.

2.6.3 The parity-check matrix of a Turbo Code.

Consider a Turbo Code with constituent encoders with generators (37, 21), as defined in

[11. None of the encoders is terminated. Only the systematic output of the second encoder

is punctured, making this a rate 1/3 code. At first no interleaver is used, but the block

length equals N.
The first step in determining the parity-check matrix is to find an encoding matrix G.

Therefore the N linearly independent information blocks 00... 1_... 0 with i = 0, 1,..., N-

1 are encoded. These sequences contain only a single one at location i. The resulting code-

words are linearly independent and form a basis for the vector space of the codewords.

They are used as rows for the encoding matrix. The dimension of the encoding matrix

is therefore N × 3N. After reorganizing the columns of the output of the first encoder,

22 2. THE FREE DISTANCE OF TURBO CODES.

such that the systematic part comes first, followed by the parity part, the encoding matrix

looks as follows:

(INxN P,V×N IP,v×N)

Here PNxN stands for the parity output of the encodem and /NxN for the systematic

output. ItCxN is the identity matrix of dimension N x N, PNxN is given by:

i 10010 10010 -.- 1

011001 01001

001100 10100

000000 ... 0000 1

Every row of PNxN consists of the previous row, shifted one position to the right, and

completed with zeros at the front. The encoders are time-invariant.

One possible choice for the matrix M is:

Iz_xN PNx,V P, vx,v)
ONxN INxN ONxN

ONxN ONxN INxN

ONxN isthe zeromatrix of dimension N x N.

Itiseasy to verifythat M x M = I3Nx3N, or thatM -t = M. ThereforeH T isgivenby:

(PNxN PNxN)
I,vxN ONxN

ON×N IN×_

Now consider the case where an interleaver is used. Every information block 00... li... 0

with i -- 0, 1,..., N - 1 would be interleaved to 00... 1G(i) ... 0 where G(i) is a bijection

from {0, 1,..., N - 1} onto itself, and symbolises the function of the interleaver. This

results in a permutation of the rows of PNxN for the second encoder. HT(G) is then equal

to

(PNxN PNxN(G))
I_rxN ONxN

O,VxN I,VxN

where PNxN(G) symbolises the dependence on the interleaver.

This analysis shows that:

• Maximizing the free distance for this Turbo Code with a fixed interleaversize is now

equivalent to finding a permutation G such that the smallest number of rows of

HT(G) that are linearly dependent is maximized.

• This analysis shows the function of the interleaver on the lowest level: it relates the

basis vectors of the constituent encoders.

• For practical block lengths, the number of possible permutations, N!, is too large to

find the optimal interleaver. Therefore a systematic way is needed to optimize the

interleaver for the free distance.

2. THE FREE DISTANCE OF TURBO CODES. 23

2.7 Conclusion.

In this chapter, the free distance problem of Turbo Codes was addressed. The following

is achieved:

• In the introduction it has been shown that 'the' Turbo Code is not uniquely defined:

both the interleaver and the termination of the constituent encoders have an influence

on the free distance. In [1], Berrou et al. have introduced a class of codes, not one

specific code. This means that task two of the project description, 'Find the free

distance of the TURBO code', cannot be solved literally.

• An algorithm for calculating the free distance of Turbb Codes was developed and

implemented.

• This algorithm was then applied to a Turbo Code with a 64K pseudorandom inter-
leaver. This led to an explanation of the error floor. The error floor is caused by

the free distance asymptote. It looks so flat because of the low free distance of the

code. However, due to the low multiplicity of the free distance codewords relative

to the interteaver size, the effective multiplicity, _"_N_=I a(w, d) • _, is very small so

that the performance is good.

• The algorithm was also applied to a Turbo Code with a 120 × I20 rectangular

interleaver. This code has a bigger free distance, but also a very large number of

free distance codewords. It was proven that as the interleaver increases, the free

distance remains twelve, but the performance of the code does not improve since the

number of free distance codewords grows proportional to the interleaver size N. For

this Turbo code, the error floor is steeper than in the previous case due to the bigger

free distance.

The free distance problem of a Turbo Code has been compared to that of a ter-
minated convolutional code. It was shown that the effect of a low number of free

distance codewords cannot be obtained with a terminated convolutional code.

• In the last section a different approach was taken. Using the parity-check matrix

for a Turbo code, the problem of optimizing an interleaver for free distance was
formalized. This illustrated the flmction of the interleaver and the complexity of

the problem. A systematic method is needed to optimize the interleaver for the free

distance.

The free distance problem of Turbo Codes with pseudorandom interleavers has already

been investigated by Robertson in [31. Robertson has found the free distance of these
codes and concludes:

It has been observed that the event leading to the minimum distance of 6 is

quite rare, it typically occurs just a few times for any particular interleaver.

Therefore, part of the work described above is a verification of Robertson's work. However,

the free distance algorithm, the free distance of a rectangular interleaver, and the parity-

check matrix is not mentioned in [3].

Chapter 3

The Distance Spectrum of TURBO
Codes.

3.1 Introduction.

This chapter focuses on the distance spectrum of Turbo Codes. The distance spectrum is

defined as _':_ w. a(w, d), which is a function of d. See Section 2.3 for the notation. It is

the goal of this chapter to reveal how the distance spectrum changes as the interleaver size

increases and to show how this change influences the code's performance. As mentioned

in Section 1.1, two major characteristics describe the performance of Turbo Codes: As

the interleaver size increases, the error floor is shifted down, while the point at which the

error floor stops dominating the code's performance is shifted to the left. Both of these

properties can be explained by considering the distance spectrum of Turbo Codes.

A first analysis of the spectrum is made in Section 3.2. The influence of the interleaver on

the distance spectrum becomes clear, and the ideal interleaver is defined.

In [71, Benedetto et al. introduce the concept of random interleaving to calculate an

upper bound on the bit error probability of Turbo Codes with given constituent encoders

and block length. The principles of random interleaving are discussed in Section 3.3. In

Section 3.4, an improvement for random interleaving is proposed and random interleaving

is extended to punctured Turbo Codes.

The effect of increasing the interleaver size on the distance spectrum is investigated in

Section 3.5 using the concept of random interleaving. Some theoretical results are obtained

for use later in the chapter.

The results of Section 3.5 are applied in Section 3.6 to explain the behavior of the error

floor. Expected values for the free distance and the number of free distance codewords are

derived. The results show that there exist complex block codes with a low number of free

distance codewords.

Finally, in Section 3.7, theoretical and empirical evidence is presented to support the

concept of spectral thinning for Turbo Codes. A theory is proposed that relates the

distance spectrum to the code's performance. The theory predicts that the performance

of Turbo Codes approaches the Shannon limit as the interleaver size, and thus the codeword

length, increases.

25

26 3. THE DISTANCE SPECTRUM OF TURBO CODES.

3.2 A first analysis: an ideal interleaver.

3.2.1 Intention.

It is the intention of this section to perform a first analysis for the distance spectrum of a

Turbo Code. For a constant block length, the influence of the interleaver on the distance

spectrum will be shown, and compared to the case where no interleaver is used.

In Section 2.2.1, the creation of a typical codeword is shown: An information block causes

detours in the first encoder which generates the output weight for the first encoder, in-

dependent of the interleaver. The information block is then interleaved and encoded by

the second encoder. However, the weight generated by the second encoder depends very

strongly on the interleaver. It is intuitively clear that in order to obtain good performance,

an information block causing a low weight output in the first encoder, should be inter-

leaved so that it produces a large weight in the second encoder.

In this section, a limit will be introduced on how much the interleaver can improve the

performance of the code for a constant block length N.

3.2.2 A necessary proof.

Before continuing, the following result will be derived:

Lemma 2 Assume:

• An ordered sequence: dt <_ d2 _ ... __ di __ ... _ dM with i = 1, 2,..., M.

• Let G be a bijection of (1, 2,..., M} onto itself.

• Let Di(G) = d_ + da(i) with i = 1, 2,..., M.

M G
• Define DAvg(G) = _M , which is the average value of Di(G).

• Define DVar(G) = _;']_M='(DA"'(G)--Di(G))2 which is the variance of Di(G).M

Then:

I. DAvg(G) is independent of G.

L The bijection G(i) = i, Vi, maximizes Dvar(G).

3. The bijection G(i) = M - i + 1,Vi, minimizes Dvar(G).

The first item is simply proven:

EM1 D,(G)
DAvg(G) = M

EM
i=t_ + dG(i)) = 2. -- = DAvg

= M M

For the second item:

Dye(i) - Dye(G) =
M D_-_i=t(Avg - Di(i)) 2

M

M DEi=I(Avg -- Di(G))2
N

M

C_._

3. THE DISTA_CE SPECTRUM OF TURBO CODES. 27

i=l

M

= Z_-_(d4--riG(i)) 2
M

i.=[

> 0

There is equality if and only if d_ = dG(i), Vi, in particular for G(i) = i,Vi.

For the third item:

Dye(G) - Dvar(M - i + 1) (3.1)

v-,M 'D _ Di(G))2 r',M 'D - Di(M - i + 1)) 2= Z.,i=t_ ._.vg _2..,i=lt ,_g (3.2)
M M

)= (de(,) - dM-,+l) (a.3)

The last e.xpression equals zero if da(i) = dM-i+1, or dG(i) is a decreasing sequence in

function of i. In particular is this valid for G(i) = M - i + 1.

Assume a bijection G', such that dc,(i) is not a decreasing sequence in function of i. Then
it can be shown, that by sorting this sequence pairwise, Dvar(G') - Dvar(M - i + 1)

can be reduced, thereby altering G', until at last a decreasing order is reached, and

DvMG') - Dw(M - i + 1) = 0.

This is now proven:

Assume a bijection G', such that dG,(i) is not a decreasing sequence in function of i. Then

there exist j and k with j > k such that dG,(j) > dc,(k). When j > k then dj >_ dk and

dM-j+l __ dM-k+t.

If the values of G'(j) and G'(k) are exchanged, the following two terms in the sum of

Equation 3.1:

dj " (dG,(j) -- dM-i+1) + dk " (dG,(k) -- dM-k+l)

become:

dj • (dG,(k) -- dM-i+l) + dk" (da,(j) - dM-k+l)

Therefore the sum in Equation 3.1 decreases by an amount equal to the difference of the

last two expressions. This difference equals:

(dj - dk) " (dG,(j) -- dG,(k)) _-- 0

Thus, sorting the sequence dG,(i) pairwise to a decreasing sequence, and thereby altering

G', can only decrease the sum in Equation 3.1 (or keep it unchanged). This fact, and the

fact that a sorted decreasing sequence makes this sum zero, means that

Dvar(G) - Dvar(M - i + 1) > 0

This proves the third item.

28 3. THE DISTANCE SPECTRUM OF TURBO CODES.

3.2.3 The ideal interleaver.

Now a Turbo Code is considered consisting of two "identical non-punctured encoders (not

even the systematic part of the second encoder is punctured). None of the encoders are
terminated. The encoders have thus an identical distance spectrum. It is the role of the

interleaver to assign to every codeword of the first encoder, a codeword of the second

encoder with the same information weight.
Lemma 2 can now be used to make some statements about the distance spectrum of this

Turbo Code. For a certain information weight w, the ordered sequence dl(w) <_ d2(w) <_

... __ d4(w) __ ... __ dM(w)(W) with i = 1,2,... ,M(w) represents the distance spectrum
of each of the encoders. The bijecti0n G(w) realizes the function of the interleaver. The

resulting spectrum of the Turbo Code is given by the sequence Di(G(w)) (for every infor-

mation weight separately!).

Applying Lemma 2 in this manner leads to the following conclusions about the distance

spectrum of these Turbo Codes:

1. The average value of the weights of the codewords is not a function of the interleaver.

2. Using no interleaver maximizes the variance of the weights of the codewords.

3. Using an ideal interleaver that interleaves the ordered sequence dl(w) <_ d2(w) __

... __ di(w) __ ... __ dM(w)(w) with G(i) = M(w) - i + 1 minimizes the variance of

the weights of the codewords. This interleaver relates low weight codewords for the

first encoder to high weight codewords for the second encoder and vice-versa.

4. The use of any other interleaver will result in a variance of the codeword weight

between these two extremes.

Therefore the use of an interleaver pushes the spectrum together, towards the average

codeword weight, thereby shifting low weight codewords to higher weight.
Notice that the ideal interleaver, as described above, cannot be realized in general. It

is impossible to independently relate the codewords of the first constituent encoder to
the codewords of the second constituent encoder, as is assumed here. As described in

Section 2.6.3, only the basis vectors can be related independently! Therefore, these Turbo
Codes with the ideal interleaver will lead to a very weak lower bound on the performance

of the code for a certain block length and component encoders.

In Figure 3.1, three spectra are drawn for a Turbo Code with (37,21) encoders and block

length N = 20: the spectrum without interleaver, the spectrum for a pseudo-random
interleaver, and the spectrum with ideal interleaver. The spectrum for the ideal interleaver

has a very unrealistic shape: this is e.xpected because the interleaver cannot be realized.

Compared to using no interleaver, the pseudorandom interleaver compresses the spectrum,

as expected.

3.3 The principles of random interleaving.

Random interleaving for Turbo Codes has been introduced by Benedetto et al. in [71. In

[9] the method has been used to evaluate an upper bound on the bit error probability

3. THE DISTANCE SPECTRUM OF TURBO CODES• 29

10s

104

103

4- None.

Pseudomndcm.

o Ideal.

10'

10o

10-'

10-z

+

4-

4-

.0

4"

÷ .

4" 4''°'°°'°°''o• 0 4-

I ÷ ..6 o °° "- 04"
I 4". "000 0 • +

÷.'0 0 0 0 "0 ÷ 4.

+ .'0 0 0 .
oo. ÷

4"
4-

4- " 0 0 "

÷ • 0 4"

0 0 -

"00 0 0
°

0 •

0 O0

+

÷

i f I I i

1'0 20 30 40 50 60 zo
(1

Figure 3.1: The distance spectrum of a Turbo Code: without interleaver, a pseudorandom

interleaver, and the ideal interleaver. 'm' stands for _-_,,, w. a(w, d), see Equation 2.1. 'd'

stands for the Hamming weight of the codewords.

of Turbo Codes with given constituent encoders and block length. The method will be

shortly explained here.
Assume two information blocks, with weight w, causing detours in both constituent en-

coders, as in Figure 3.2. The probability that the information block entering the first
encoder is interleaved to the information block for the second encoder, is equal to the

number of interleavers that interleave the first block to the second block, divided by the

total number of interleavers. This, off course, assumes a uniform distribution over the in-

terleavers. The total number of interleavers of length N that interleave correctly is given

by w! • (N - w)!: There are w! ways of interleaving the ones to the ones, and (N - w)!

ways of interleaving the zeros to the zeros. The total number of interleavers of length N,

IoIoI, IoIoI, IoIoto IoI, IoI, IoIoIoIoIoI

IoIo1oI, IoIoIoI_IoIoIoI_IoIoI, IoIoIoI
Figure 3.2:

__.- RSC 1

_tP-- RSC2

30 3. TH_ DISTANCE SPECTRUM OF TURBO CODES.

.:.(N-w)!is given by N!. Therefore this probability equals N! , or :

1

W

Next, Benedetto et al. introduced the input-redundancy weight enumerating function

of a systematic block code as:

AC(w'z) = E AijWiZ_
_j

where Aid stands for the number of codewords caused by an information block of Hamming

weight i whose parity check bits have Hamming weight j, so that the total Hamming weight

isi+j.
To stay consistent with the notation used previously in this report, the following equivalent

function is introduced, the input-output weight enumerating function (IOWEF):

AC(w, D) = _, "'w,d"ACur_,r_d,..,
w,d

(3.4)

C
where Aw, d stands for the number of codewords caused by an information block of Ham-
ruing weight w and that have total Hamming weight d. The two functions are equivalent

because i + j = w + j = d.

The Equation 3.4 can be rewritten as:

Aw(D)WAC(W,D) = _ c w
W

with:
C d

A_,CD) = _ Aw,dD
d

The constituent codes of a Turbo Code can be considered as block codes since the in-

formation blocks are finite. Therefore they have IOWEF's ACl(W,D) and AC2(W,D).

Benedetto and al. proved that for the IOWEF of the Turbo Code,ATe(w, D), averaged

over all possible interleavers:

A_C(D) = A_I(D)" A_2(D) (3.51

W

C
The difficulty lies in calculating the terms Aw, d for each of the constituent encoders. The
approach is to calculate how a particular completed detour, or series of completed detours,
contributes to these terms. A 'series of detours' is defined as an ordered group of detours.

This group may contain a particular detour more than once. The 'output weight' of a

series of detours is. the sum of the output Hamming weights of the detours. The 'length'

of a series of detours is defined as the sum of the lenghts of the information sequences that

32 3. THE DISTANCE SPECTRUM OF TURBO CODES.

Iololo Iotolololololo I_IoII I! 1ololl]ol

Figure 3.3: There is only one information block that causes this uncompleted detour in
the trellis of a constituent encoder.

Io], !0101ol, Iol, 10101ol, I, I, !ololi 10]

Figure 3.4: This series of three detours contains two completed detours and one incom-

pleted detour.

encoder, and in this specific order, is given by:

N-l+(n-1) _ (3.7)(_ - 1) /

It equals the number of partitions of N - l into n numbers: there are N - l zeros to be
divided over n locations before and between the sequences, but not after the last sequence.

c
This series of detours contributes with this amount to Aw, d.

Neglecting information blocks that do not terminate the constituent encoder as in [9] leads

to incomplete spectra for Turbo Codes averaged over all interleavers.

3.4.2 Extension to punctured codes.

Up to this point, only non-punctured constituent encoders were considered for random

interleaving. However, most Turbo coding schemes use puncturing to increase the spectral

efficiency.
An example shows the influence of the puncturing on random interleaving: Consider

a constituent encoder with generator (37,21) and whose output is punctured as the first

constituent encoder in [1]. Figure 3.5 shows two information blocks going into this encoder
with N = 10. The information blocks cause the same completed detour in the trellis: they

both contain the sequence 11111 that causes the completed detour. Nevertheless, they

produce a different output Hamming weight due to the puncturing. Instead of contributing

with N - l + 1 -- 10 - 5 + 1 = 6 to As,d for some d, this detour contributes with 3 to

A5,5 and 3 to As,7. The best way to think of this, is that there are actually two different

sequences causing different output weights, but that there are restrictions on the positions

where these sequences may begin in the information block: one sequence has to start on

3. THE DISTANCE SPECTRUM OF TURBO CODES. 33

Iol, I, I, t, I, loIoIoIoI IotoI, I, I, l, I, IoIoIoI

Figure 3.5: These identical sequences 11111 start at different positions in the information

block. They produce different output weight due to the puncturing.

an even position, the other on an odd position.

In general, with a puncturing period of T, every completed detour for the non-punctured

encoder leads to T completed detours for the punctured encoder with different output

Hamming weights. Any of the T information sequences of these detours can only start
at a limited number of positions in the information block: those positions that have the

same value modulo T. This means that the contribution of these detours to the distance

spectrum of the constituent encoder becomes more complicated to calculate:
Consider a series of n detours. The information sequence causing the i-th detour can only

start at those positions whose modulo T value equals Pi, i = 1, 2,..., n. Pi takes on a value

in the set {0, 1,..., T-1}. Now an information block of length N is constructed containing

the ordered information sequences of the detours in the series. These sequences are placed

so that the number of positions before the first sequence, and the number of positions

between two consecutive sequences, is minimized so that this number takes on a value in

the set {0, 1,... ,T - 1}. The number of positions that remain after the last sequence is

called L. The spaces before, between, and after the sequences are filled with zeros. This
information block causes the series of detours in the trellis of the constituent encoder.

Moreover, by taking units of T zeros from the L positions at the end of this information

block and inserting them before and between the sequences, more information blocks are

formed that cause this series of detours. Note that by inserting T zeros between two

sequences, the requirement on the begin positions of the sequences is not violated. The

number of partitions of L_-J units ofT zeros into n ÷ 1 locations before, between, and after

the sequences, equals:

(L_l+n)n (3.81

This is the total number of information blocks that cause this series of detours and it
C

equals the contribution of this series of detours to Aw, d.
It is possible to derive an upper and lower bound for this contribution. L takes on the

maximum value N-l when the numbers of positions before the first sequence, and between

consecutive sequences, are all zero. I is the sum of the lenghts of the information sequences.

The upper bound on Equation 3.8 is therefore:

+ n) (3.9)n

34 3. THE DISTANCE SPECTRUM OF TURBO CODES.

L takes on the minimum value N - l - n. (T - 1) when the numbers of positions before

the first sequence, and between consecutive sequences, are all T - 1. The lower bound on

Equation 3.8 is therefore:

For N >> l, n, T, the two bounds approach one another.

3.4.3 Calculating a few terms of the average distance spectrum.

Calculating the whole distance spectrum will only be feasible for Turbo Codes with a small

block size N. Hereafter, a method will be explained to calculate the distance spectrum of

a Turbo Code, averaged over all interleavers, up to a certain weight dmax. Only the first

encoder is terminated.

For the average Turbo Code, AdTc is defined as:

N N

w=l uJ----1

(3.11)

where a(w, d) = Aw, d.TcAccording to Equation 3.5:

• ,_

W

(3.12)

acz ac2 for d < dmax and w < N.The problem is now reduced to determining at most "-'w,d, _'w,d -
For the first encoder, all completed detours are determined with output Hamming weight

d_ _< dmax and length I t <_ N. Using these detours, all series of completed detours with

output weight d _< dmax and length I <_ N are assembled and their contributions to A_,½

are calculated using the techniques explained in the previous sections.
A similar calculation is performed for the second encoder, but incompleted detours are

also considered.

The number of completed detours to consider increases exponentially with dmax and so

does the complexity of this calculation.

3.5 The effect of increasing the interleaver size on one term

of the distance spectrum for average Turbo Codes.

3.5.1 A property of recursive convolutional codes.

The constituent encoders of Turbo Codes are (2, 1, rn) recursive systematic convolutional

encoders with memory size m. For a recursive convolutional code, the input in the memory

at every step is a linear combination of the entering information bit and at least one

memory bit.

3. THE DISTANCE SPECTRUM OF TURBO CODES. 35

Information input

I t I

I;I L: I:1-
Figure 3.6: The general feedback form of a recursive convolutional encoder.

I

!

Lemma 3 Given a (2, 1, m) recursive eonvolutional encoder with memory size m, every

completed detour in the trellis of this encoder is caused by an information sequence with

Hamming weight at least two.

Proof: Figure 3.6 shows the general feedback form of the encoder.
First, it will be shown that a single information bit with value 1 is needed to take the

encoder away from the zero state. Consider an encoder in the all zero state. When an
information bit with value 0 enters the encoder, the input into the memory is a linear

combination of this 0 and the zero state of the encoder: the encoder must remain in the

zero state. However, when an information bit with value 1 enters the encoder, 100... 00

becomes the new state.
If the encoder returns to the zero state during step t, then the inputs into the memory at

steps t, t - 1,..., t -- rn + 1 all have to be zero. Before step t - rn + 1, the state of the
encoder has a i in the first position, otherwise the zero state would have been reached

earlier. Starting from this state, rn information bits are inserted in the encoder, such that

there are m zero inputs entering the encoder's memory. It will now be shown that one of

these information bits has to be a 1. After a certain number of steps, the 1 that used to

be in the first position of the memory, occupies the last position that is fed back to the

input. At this point an information bit with value 1 needs te be inserted so that the input

in the memory, which is now the sum of this memory bit with value 1 and the information

bit, is zero.
It has been shown that a single 1 is needed to leave the zero state, and at least another 1

to return to the zero state.

3.5.2 Increasing the interleaver size for average Turbo Codes.

In Section 3.4.3, a method was explained to determine a few terms of the distance spectrum

of the average Turbo Code. The bottom line was to calculate A_,½ and A_,2d for a limited

number of pairs (w, d) using series of detours for each of the encoders. Then, ATe(D) can

be determined using Equation 3.12. In this manner, every series of detours for the first

encoder is randomly interleaved to every series of detours for the second encoder that has
the same information weight w. It is possible, however, to skip the calculation of A_,½

C2
and Aw,d: and calculate the direct contribution of a specific pair of series of detours, one

series for each encoder, to A(_V, D) TC.

Consider for the ith encoder, i = 1, 2, a series of ni detours. This series has a length li,

an output weight di, and an information weight w.

36 3. THE DISTANCE SPECTRUM OF TURBO CODES.

For the first encoder, which is terminated, all the detours of the series are completed. If

the detours of the series for the second encoder are also completed, then the contribution

of this pair of series to A Tc equals:w,dl+d2

nt n2 (3.13)

ll/

based on Equation 3.5 and Equation 3.6.
If the series of detours for the second encoder contains an incompleted detour, then

TC equals:the contribution of this pair of series to A_,d_+d =

nl " (n2 - 1) (3.14)

l/]

based on Equation 3.5, Equation 3.6, and Equation 3.7.

First, the inttuence of increasing N on Equation 3.13 is investigated. Consider N >>

11,12, nt, n2, then Equation 3.13 can be approximated as:

w[. N_L+-2-w (3.15)
nl[• n2[

Due to Lemma 3 and the fact that all detours are completed, the minimum information

weight per detour is two, and therefore w >_ 2 • max(nl, n2). Assume without loss of

generality nl >_ n2, then w _> 2- nl. Three cases are considered:

• nl > n2: The exponent of N in Equation 3.15 is always negative. The contribution
TC N increases.of this pair of series to A_,=+_ decreases as

• nl = n2 mad w > 2 • nt: The exponent of N in Equation 3.15 is always negative.

Same conclusion.

• nl = n2 and w = 2-nI: The exponent of N in Equation 3.15 is zero. The contribution
TCof this pair of series to A_,=+_ converges to a finite non-zero value as N increases.

Note that the series contain an equal number of completed detours, and all these

detours have information weight two: they are caused by information sequences with

Hamming weight two.

Next, the inttuence of increasing N on Equation 3.14 is investigated. As above, consider

N >> Ii, [2, nl, n2. Equation 3.14 can be approximated as:

w! . N_l+n2-_'-I (3.16)
nl!" (n2 - I)!

For the same reason as mentioned above, w > 2-nl. For the second encoder all the

completed detours have at least information Hamming weight two, but the incompleted

detour may have information Hamming weight one, and therefore w >_ 2 • (n2 - 1) + 1 =

2" n2 -- 1. Three cases axe considered:

3. THE DISTANCE SPECTRUM OF TURBO CODES. 37

• nt > n2: This implies w > 2 • nl. The exponent of N in Equation 3.16 is always
TC

negative. The contribution of this pair of series to A_,z+ u decreases as N increases.

• nt = n2: Same conclusion.

• nz < n2: This implies w >_ 2- n2 - 1. Same conclusion.

This analysis leads to the following lemma:

Lemma 4 A Turbo Code defined by two recursive convolutional constituent encoders is

given. The first constituent encoder is terminated, the second encoder not. Two series

of detours, one series for each encoder, is given. The series have the same information

weight. The contribution of this pair of series to the spectrum of the Turbo Code, averaged

over all interleavers with a uniform distribution over the interleavers, converges to a finite

non-zero value as the interleaver size increases, if and only if:

* the two series contain only completed detours,

• the two series contain an equal amount of completed detours,

• and these detours have information weight two.

In any other case, the contribution of this pair of series converges to zero.

Note that a puncturing pattern is not mentioned in this lemma: Equation 3.13 and Equa-

tion 3.14 are only valid for non-punctured encoders. However, the proof can be repeated

with the upper bound, Equation 3.9, and the lower bound, Equation 3.10, that can be ex-

tended to incompleted detours. Therefore, the lemma is also valid for punctured encoders.

The proof can also be repeated for the case where none of the encoders is terminated. The
result is identical.

3.5.3 One term of the distance spectrum.

In Section 3.4.3, a method was discussed to calculate some terms of the distance spectrum

of an average Turbo Code. First, using series of detours for each of the constituent

encoders, Awe,½ and AwC,2dare calculated for some (w, d). Then using Equation 3.12, AT,Ca
can be determined.

In the previous section, it has been shown that the influence on the Turbo Code's spectrum

of a pair of series of detours, one series for each encoder, can be calculated directly without
CI C2first determining Ato,d and Aw, d. Therefore, an equivalent method for calculating AT,Ca is

the following: Determine all pairs of series of detours, one series for each encoder, such

that all pairs have information Hamming weight w and output Hamming weight d. The

output Hamming weight of a pair of series is the sum of the output weight of the series.

The number of these pairs is finite. Omit those pairs that contain series whose length is
TC for everygreater than the information block size N. Then, calculate the influence on Aw, a

pair separately.
TC

The results from the previous section are used to predict how AuJ,d evolves for fixed (w, d)

as the information block size, equivalent to the interleaver size N, increases. Consider

38 3. THE DISTANCE SPECTRUM OF TURBO CODES.

the information block size larger than the length of every series. Then the number of
TC

pairs of series that contribute to Aw, d, does not increase as /V increases. According to

Lemma 4, only those contributions of pairs of series that consist of completed detours

with information weight two, converge to a value different from zero. Thus, it can be

concluded that for large enough N, the contributions of detours with information weight
TC

two dominate A_,,d.

Lemma 5 A Turbo Code defined by two recursive convolutional constituent encoders and

a puncturing pattern is given. The information block size is N. For a certain (w, d), the

TC of pairs of series, one series for each constituent encoder, that containcontribution to Aw, a
only completed detours with information weight two, is A _.

For every _, there exists N' such that lAw,arc _ A'I < _ for every N > N'.

For the distance spectrum of the average Turbo Code, the total multiplicity of the

codewords at distance d is AT c = Zw=IN W. Aw,a.TC

A non-catastrophic Turbo Code is defined as a Turbo Code for which Vd, _w t, inde-
TC W t. given d, the number ofpendent of the interleaver size, such that A_, a = 0, Vw > For a

terms in the sum of Equation 3.11 is then the same for interleaver sizes N > w'. Therefore,

see Equation 3.12, it is sufficient that one of the constituent encoders is non-catastrophic.

This is always the case if one of the constituent encoders is systematic and its systematic

output is not punctured. For the remaining part of this chapter only non-catastrophic

Turbo Codes are considered.

With the definition of a non-catastrophic Turbo Code, the previous lemma leads to:

Lemma 6 A Turbo Code defined by two recursive convolutional constituent encoders and

a puncturing pattern is given. The Turbo Code is non-catastrophic. The information block

size is N. For a certain d, the contribution to ATc of all pairs of series, one series for

each encoder, that contain only completed detours with information weight two, is X.

For every e, there exists N t such that IATc - A_I < e for every N > N _.

Every term of the distance spectrum of an average Turbo Code converges to a finite
value as the interleaver size increases.

3.6 The free distance of an average Turbo Code.

3.6.1 Theory.

In this section, it will be shown that free distance codewords of Turbo Codes most likely

originate from a single completed detour with information Hamming weight two in the

trellis of each constituent encoder.

Consider the spectrum of the average Turbo Code up to Hamming weight dmax- dmax
is the smallest codeword weight for which a pair of series of detours contributes to ATc,

where both series only consist of completed detours with information weight two. This

weight dmax can easily be found, as well as all such pairs of series:
For the i-th encoder, i -- 1, 2, consider the set Si of completed detours with information

3. THE DISTANCE SPECTRUM OF TURBO CODES. 39

}

i --

.

weight two that cause the minimum output weight di compared to other completed detours

with information weight two for this encoder. Every element of Si corresponds to a series

of detours containing only this detour. Taking one of these series for each encoder, a

pair of series is obtained that contributes to ATCd2 and for which the series consist of

completed detours with information weight two. By construction, no other pair of series

for which the series consist of completed detours with information weight two contributes

to A Te for d < dl + d2.

According to Lemma 6, as the interleaver size N increases, the multiplicities A TC for
TC

d < dl + d2 converge to zero. However, the multiplicity Adl+d 2 converges to a finite non-

zero value that only depends on the contribution of the pairs constructed above. ATCd2

converges to:
Ac_ C2

TC TC 2,a,"A_,a2 (3.17)
lim Ad,+d2 = 2. A2,d1+d2 = 2 •

The following results: Free distance codewords of Turbo Codes are likely to originate from

a single completed detour with information Hamming weight two in the trellis of each

constituent encoder. The construction described above makes it possible to calculate the

expected value of the free distance and the expected number of free distance codewords.

The interleaver size has to be 'large enough'.
Note that this result can be used to obtain an upper bound on the error floor that can be

reached with a particular Turbo Code and interleaver size• There have to be Turbo Codes

with a lower error floor than the average Turbo Code. The error floor of the average Turbo

Code is given by:

ATCdl+d2 erfc (_)R-• (dr + d2)1. °2.N

for N sufficiently large•

Note that as N increases, ATSd 2 converges to a finite non-zero value. Therefore: As the
interleaver size of an average Turbo Code increases, its error floor shi_s down proportion-

ally to -_. As the interleaver size increases, it is possible to find interleavers that lower

the error floor. This theoretical result confirms the simulation results in [31. An example

in the following section demonstrates the theory.

3.6.2 An example.

Consider a Turbo Code with constituent encoders and puncturing patters as in [1]. The

information block size, or interleaver size, is N. The construction of Section 3.6.1 is

applied to calculate the expected value of the free distance and the expected number of

free distance codewords. The following results are obtained:

• The set Sl contains three detours that cause dl = 4.

• The set $2 contains three detours that cause d2 ---- 2.

• Acl c22,4----"A2,2---- + L ff- J+ 3 N

40 3. THE DISTANCE SPECTRUM OF TURBO CODES.

4.5

3

2.5

E

2

1.5

I

O.5

.-J . ,I

i01 10z 10_ 10"
tntedeave_ize N

Figure 3.7: This plot shows the convergence of m = A2T,_ to 4.5.

ATC IV ATc = A_ c _. 2" A2T,_• dl+d2 _ Ew=l _ " w,dl+d2

The third result is calculated using the elements of $1, $2 and Equation 3.8. Now, using

Equation 3.17:
Ac_

AT c_2. A2c'_" 2,2 =2.4.5

The expected, value of the free distance is six, and the expected number of the free dis-
TC

tance codewords, A2,s, is approximately 4.5 for 'large' interleavers. Figure 3.7 shows the

convergence of A2T,sc to 4.5. For N = 1000, A2T,sc equals 4.42. For a practical interleaver
size of 64K, 4.5 will be a very good approximation. For obtaining A To, A2T,_ needs to be

multiplied by the information Hamming weight w = 2.
These conclusions are confirmed by the results of Section 2.3. There the free distance code-

words are determined for a particular Turbo Code with the same constituent encoders,

puncturing pattern, and a 64K pseudorandom interleaver. This code has a free distance

equal to six and three free distance codewords. Moreover, the form of the free distance

codewords is exactly as described above: The free distance codewords cause a single com-

pleted detour of information weight two in the trellis of each constituent encoder.

Using the union bound, Equation 2.1, the free distance asymptote of the average Turbo

Code is given by:

2 v.e c E

3. THE DISTANCE SPECTRUM OF TURBO CODES. 41

t.

10'

E
10o

o

÷ N,- 100

x Ndm_

s t

d

Figure 3.8: This plot shows the convergence of rn = A Tc for d _< 6. As the interleaver

size N increases, ATc converges to zero for d < 6. 'd' stands for the codeword Hamming

weight.

i

This is an upper bound on the obtainable error floor for a particular Turbo Code. As the

interleaver size increases, the bound is shifted down proportionally to _.

Figure 3.8 shows how ATc converges to zero for d < dz ÷ d2 = 6.

3.7 Spectral thinning for increasing interleavers.

3.7.1 Intentions.

In the previous section, the behavior of the error floor in function of the interleaver size

was explained. As the interleaver size increases, the error floor is shifted down. There is,

however, a second characteristic of the performance curve that varies with the interleaver

size: As the interleaver size increases, the error floor dominates the performance down to

smaller signal to noise ratios, see Figure 1.2 in Section 1.1. In this section an explanation

for this behavior is proposed. First, some theoretical evidence is developed to support the

idea of spectral thinning. Then, empirical evidence is presented that shows the spectral

thinning for a particular Turbo Code. Finally, a theory is proposed that shows how spectral

thinning influences the code's performance.

3.7.2 Theoretical evidence for spectral thinning.

Section 3.5.3 treats the behavior of one term in the distance spectrum of an average Turbo

Code. It was shown that as the interleaver size increases, ATc converges to a finite value

that depends only on detours with information weight two.

42 3. THE DISTANCE SPECTRUM OF TURBO CODES.

In Section 3.6 this result was used to show how, for large enough interleavers, detours with

information weight two determine the free distance of a Turbo Code.

It is now possible to predict how the spectrum changes as the interleaver size increases.

The evolution of a certain term ATc in function of the interleaver size is discussed.

In Section(1.5.3) it was shown that A TC can be calculated as follows:

1. For each encoder determine all detours with output Hamming weight smaller than

or equal to d', and length smaller than or equal to the interleaver size N. For the

first encoder only completed detours are considered, for the second encoder also

incompleted detours.

2. For each encoder determine all series of detours such that each series has an output

weight equal to d' and a length smaller than or equal to N.

3. Determine all pairs of series of detours, one series for each encoder, such that the

output weight of each pair equals d _.

4. Calculate the contribution of each pair to A TC using Equation 3.13, Equation 3.14,

or the equivalent of these equations for punctured Turbo Codes.

This algorithm can now be used to predict how A Te varies when the interleaver size

increases:

• Assume d_ > -_, where R stands for the rate of the Turbo Code, then A TC -- 0
because the codeword weight cannot be larger than the codeword length.

• As the interleaver increases, the number of pairs of series that contribute to A TC

increases because for an increasing number of series with output weight smaller than

or equal to d _, the length will be smaller than or equal to N. Therefore A TC increases.

• Above a certain size, increasing the interleaver no longer leads to more pairs that

contribute to A To. This effect was explained in Section 3.5.3. When the interleaver

size keeps increasing, the contributions to ATc of those pairs of series, where the

series do not only consist of completed detours with information weight two, converge

to zero. Therefore, ATc decreases as it converges towards its final value, determined

only by completed detours with information weight two. This effect is referred to as

'spectral thinning'.

Therefore, the spectrum evolves as shown in Figure 3.9. In the next section, an example

illustrates this behavior.

3.7.3 Empirical evidence for spectral thinning.

Consider a Turbo Code with constituent encoders and interleaving pattern defined as in

[11. For this code, random interleaving was performed using detours with information

weight up to 4 and for codeword weights up to 20. Figure 3.10 shows the results for

N ----50,100, oo. As the interleaver size increases, the spectrum converges to the spectrum

of the average Turbo Code with N = oe. This means that the terms converge to zero, or a

3. THE DISTANCE SPECTRUM OF TURBO CODES. 43

1

[.

d

____lnfinite interleaver

'i",/_ _ _ger interleaver

d

Figure 3.9: This picture shows in principle how the spectrum evolves as the interleaver
size increases.

10 s

10"

10=

El0'

10'

100

I0 "I

0

÷

0

÷
0

"I" I I l

4 6 8 10

o O

.#.

x 4-

0

I

12

d

® 0 X

4-

_ o x
÷

0 0 X

X ÷
0

o N,,50

+ N,,100

x N infinite

,'8

Figure 3.10: This plot shows the effect of spectral thinning for a particular Turbo Code.

The spectra were obtained using the algorithm of Section 3.4.3. rn = A Tc.

44 3. TIIE DISTANCE SPECTRUM OF TURBO CODES.

non-zero value. Notice that AToc is smaller for the N = 50 code than for the N = 100 code.
This is not in contradiction with the results of Section 3.7.2! For this weight, the length of

the interleaver limits the number of pairs that contribute to AT0c: for many series, the sum

of the lengths of the detours exceeds the interleaver size. As the interleaver size increases

from 50 to 100, more pairs of series contribute to A_0c.

Only detours with information weight up to 4 were used to keep the calculation time

feasible. It can be expected that using all relevant detours would make the effect of

spectral thinning stronger.

3.7.4 A theory of spectral thinning.

In the two previous sections, theoretical and empirical evidence is presented that supports

the effect of spectral thinning for Turbo Codes as the interleaver size increases. In this

section, a theory is proposed that shows the effect of spectral thinning on the performance

of Turbo Codes. The theory explains why, for increasing interleaver size, the error floor

dominates the performance down to smaller signal to noise ratios, and therefore, the bit

error rate curve becomes steeper.

Figure 3.11 shows a part of the spectrum for a Turbo Code with infinite interleaver. The

component encoders and the puncturing pattern have been chosen as in [11.In Figure 3.12,

a few terms of the union bound are plotted that correspond to the spectrum of this Turbo

Code with infinite interleaver. The free distance term exceeds all other terms: it domi-

nates the performance of this code.

Figure 3.11 also shows parts of the spectra for two other Turbo Codes with finite inter-

leaver. These two spectra are fictional: they have not been calculated as is the case for

the Turbo Code with infinite interleaver. However, they illustrate the effect of the spec-

tral thinning described in the previous sections: as the interleaver increases, the spectrum

converges to the spectrum of the code with infinite interleaver. Figure 3.12 also shows the
terms of the union bound corresponding to these spectra. Note that the free distance term

does not dominate the performance at low signal to noise ratios: there is a higher distance
term that cuts the free distance term. Thus, the free distance term only dominates the

performance for signal to noise ratios above the point where it is cut by a higher order

term. This point moves to lower signal to noise ratios for increasing interleavers.

This theory explains the shape of the performance curves of Turbo Codes. As the inter-
leaver size increases, the spectrum thins and the error floor dominates the performance

down to smaller signal to noise ratios.

In reality the effects of the error floor shifting down, and the error floor dominating down

to smaller SNR, are not independent. Both effects are a consequence of the fact that each

term in the spectrum converges to a finite value. As the interleaver size increases, these

effects happen simultaneously. There is no reason why this mechanism should stop when
a certain interleaver size is reached. Therefore this theory predicts that as the interleaver

size increases, the performance of Turbo Codes approaches the Shannon limit.

3. THE DISTANCE SPECTRUM OF TURBO CODES. 45

107

Io°

ld

10'

E

_d

ld

10_

5

X
O

' x

x
O

4-

x _ .'- Nsma_
÷ O

X N la._g_r

o N infln_e

10 15 20 25
d

3O

Figure 3.11: This plot shows three spectra of Turbo Codes. The spectrum for the infinite

interleaver is exact, the two other spectra are fictional. The spectra show the behavior of

spectral thinning, rn = ATc.

3.8 Conclusion.

This chapter has focused on the distance spectrum of Turbo Codes to explain their per-

formance. The following conclusions can be drawn:

• Compared to the event that no interleaver is used, the interleaver causes the variance

of the spectrum to decrease. It does this by combining low weight codewords for

the first constituent encoder with high weight codewords for the second constituent

encoder, and vice-versa.

• Every term of the distance spectrum of Turbo Codes with fixed constituent encoders

and puncturing pattern, averaged over all interleavers, converges to a finite value as
the interleaver size increases.

For a sufficiently large interleaver size, the free distance codewords most likely cause a

single completed detour with information weight two in the trellis of each constituent

encoder. It is relatively simple to calculate the expected values for the free distance
and the number of free distance codewords.

The error floor for a Turbo Code, averaged over all interleavers, is an upper bound

for the error floor of this Turbo Code with a particular interleaver. This bound shifts

down as the interleaver size increases.

• Spectral thinnig occurs as the interleaver size increases. This effect supports a theory

that explains the shape ofthe Turbo Code's performance curves.

46 3. THE DISTANCE SPECTRUM OF TURBO CODES•

n"
Ill
tQ

102

lO0

10 -2

10 -4
0

10s

i i i I i

....... Small interleaver.

Free distance term. - "_'; _;'_;---'"_'i_-C:--.-- -- i ---=:,., ;,_:/

I Higher order terms. I - =_@'_-_
I I 1 l I

0.5 1 1.5 2 2.5 3

Eb/No (dB)
I I I I

¢t"
LU
rn

100

10 -s

10 -I°

100

n'-
uJ 10 -s
g:l

10 -I0
0

- Larger intedeaver.
-=:=:. =:,- i =";-- ;-- ;ill i, _- -...... ==l==,='l,,iii-

- =;=i-_----'i__

I -- Free distance term. IHigher order terms.
I I I I I

0 0.5 1 1.5 2 2.5 3

Eb/No (dB)
I I I I I

:-_ =',iiiiiiiiiiiiiiii_i_,l . = -

I.___ Free distance term.
I Infinite intedeaver.

Higher order terms, i
I I I 1 I

0.5 1 1.5 2 2.5 3
Eb/No (dB)

Figure 3.12: This plot shows the influence of spectral thinning on the performance of Turbo

Codes. Each of the graphs above depicts a few terms of the union bound corresponding

to the spectra in Figure 3.11. Since only the relative position of the terms is important,

Equation 2.1 was used with h r = 1. Note that the free distance term dominates the

performance down to smaller signal to noise ratios as the interleaver size increases.

3. THE DISTANCE SPECTRUM OF TURBO CODES. 47

• The combined effects of the error floor and spectral thinning imply that the per-

formance of a Turbo Code approaches the Shannon limit as the interleaver size

increases.

The method of random interleaving was improved and extended to punctured codes in

order to obtain these results.

Chapter 4

The Decoding Complexity of
TURBO Codes.

4.1 Introduction.

In engineering every decision is a compromise between performance and cost. A careful

performance versus complexity comparison is necessary to choose a code for a given appli-
cation. It would therefore be incomplete to study the performance of Turbo Codes without

addressing the decoder's complexity. In this chapter the decoding complexity of Turbo

Codes is investigated and compared to the decoding complexity of a Viterbi decoder.

4.2 The decoding complexity.

The decoding complexity of Turbo Codes was succesfully investigated by Andersen in

[5]. Therefore the results presented in this section differ little from Andersens'. Also the

graphical presentation of the operations originates from [51.

The decoding complezity is measured as the number of operations per information bit that

are required to decode.

First the decoding complexity of the MAP algorithm is considered. For the notations used

in this section, see Section 1.4, where the MAP algorithm is discussed. Note that all the

operations are floating point. In practice rescaling is needed. Figure 4.1 and Figure 4.2

illustrate the calculation of cet(m), 13t(rnt), and _(rn l, i).

The calculation of at(m) requires two multiplications and one addition for each state.

Assuming an encoder with memory size M, this amounts to 2 - 2M multiplications and
2M additions. The same number of operations is needed to calculate _t(rn_). a_(rn t, i)

is calculated along with _t(rn') so two more multiplications are needed for every state.

For calculating the log-likelyhood ratio A(dt), the values of _(rnt, i) have to be added

for every state, and a final division is required. Table 4.1 presents the total number of

operations per information bit for the MAP algorithm. Division is assumed to have the

same complexity as multiplication.
One decoding iteration requires that the MAP algorithm be applied twice. In [1], con-

stituent encoders with memory size M = 4 are used and simulation results are published

49

50 4. THF_, DECODING COMPLEXITY OF TURBO CODES.

X

X

+

Figure 4.1: This figure illustrates the calculation of at(m).

MAP decoder

Turbo decoder

1 iteration

Turbo decoder M=4

18 iterations

[] Additions
4- 2 M

8- 2 M

Multiplications

6.2 M + 1

12 • 2 M + 2

2304 3492

Table 4.1: The decoding complexity of a Turbo Code per information bit.

for eighteen iterations. The table also includes the decoding complexity for this Turbo

Code.

The channel output and the information exchange between the decoders are assumed to

be quantized. When this is the case, _(m',i) can be obtained by 2 • 2M table look-up

operations to calculate at(m). The values of _(m', i) are then stored to calculate/3t(m').

The decoder memory requirements can be estimated as (3- 2M + 4) • N words. N is the

information block size. at(m) and _t(m', i) need to be stored for the complete block, re-

quiring 3 - 2M • N words. Also the complete input block for the encoder must be stored
and the two interleavers need 2- N words.

Note that the decoding complexity per information bit only depends on the memory size

of the constituent encoder, and not on the information block size N. Increasing the in-

formation block size improves the performance of Turbo Codes, but does not increase the

decoding complexity per information bit.

4.3 Turbo decoders versus Viterbi decoders.

For a rate ½ convolutional code with memory size M, the Viterbi decoding complexity
per information bit is estimated by 3 • 2 M integer additions and 2 • 2 M table look-up op-
erations: Two branches arrive at every state. For each branch, the metric is found in

a look-up table. This branch-metric is then added to the total metric of the path that

the branch belongs to. The total metrics of the two paths that arrive in the same 3rate

are then compared to determine the surviving path. This comparison is equivalent to a

subtraction, or an addition.

For the (2, 1, 14) convolutional code discussed in Section 1.1, the Viterbi decoding complex-

i

4. THE DECODING COMPLEXITY OF TURBO CODES. 51

I....

M(m',o) x 1

M(-',1) x
A

T
+

+

! !

r w
u

I

I register 1 I register I

' I I '

Figure 4.2: This figure illustrates the calculation of fl_(m'), _(m', i), and h(dt).

52 4. THE DECODING COMPLEXITY OF TURBO CODES.

ity per information bit equals 49152 integer additions and 32768 table look-up operations.

It is not trivial to compare the decoding complexity of the Turbo Codes with memory four

constituent encoders, eighteen decoder iterations, and a 64K interleaver, to the Viterbi

decoding complexity of this (2, 1,14) convolutional code. The following considerations
have to be made:

• The Turbo decoder requires floating point addition and multiplication, while the

Viterbi decoder only needs integer addition.

• The Viterbi decoder requires more operations.

• Does the decoder need to be optimized for chip size or decoding time? For practical

systems, the possibility of pipelining operations or reusing calculation units needs to
be considered.

The comparison has to be made on the hardware level.
Note that in order to improve the performance of a convolutional code, the memory size
of the encoder needs to be increased. At the same time the decoding complexity per

information bit grows exponentially. This is in contradiction with Turbo Codes where

the performance can be improved without increasing the decoding complexity by using a

larger information block size. It can be expected that when the performance requirements

are high enough, the Turbo Code will outscore convolutional codes in decoding complexity.

4.4 Conclusion.

In this chapter, a measure for the decoder complexity of Turbo Codes was discussed. The

decoding complexity per information bit only depends on the memory size of the con-

stituent encoders, but not on the information block size. Therefore, the performance of

Turbo Codes can be increased without also increasing the decoding complexity.

The decoding complexity of Turbo Codes was compared to the decoding complexity of
convolutional codes with Viterbi decoder. The Viterbi decoding complexity grows e.xpo-

nentially with the memory size of the convolutional code. It can be expected that when the

performance requirements are sufficiently high, the decoding complexity of Turbo Codes

is lower than that of convolutional codes with Viterbi decoding.

Chapter 5

Improvements for TURBO Codes.

5.1 Introduction.

The performance of Turbo Codes can be improved by increasing the information block

size, or equivalently the interleaver size. For a fixed block size, however, the constituent
encoders and the interleaver can be used to optimize the performance. Especially inter-

esting are improvements that do not increase the decoding complexity of the code. In the

previous chapter, it was concluded that the decoding complexity per information bit is an

exponential function of the constituent encoder's memory size. Therefore, the goal is to

optimize the performance over all constituent encoders of a given memory size.
In this chapter, constituent encoder selection and interleaver design are addressed.

• °

5.2 Constituent encoder selection.

This section addresses the problem of constituent encoder selection for Turbo Codes. As

mentioned in the introduction, it is the intention to optimize the encoder for a given mem-

ory size.
According to the results of Section 3.6, free distance codewords result from a single com-

pleted detour of information weight two in the trellis of each constituent encoder, at least
when the interleaver size is sufficiently large. In Section 3.7, the behavior of the distance

spectrum is discussed: as the interleaver size increases, every term of the distance spectrum

converges to a finite value that is determined only by completed detours with information

weight two. This convergence starts at the 'low weight end' of the distance spectrum and

expands to higher weights as the interleaver size increases. It is therefore correct to state
that the codewords of relatively low Hamming weight for a Turbo Code are caused by

completed detours of information weight two. The word 'relatively' is used to stress the

dependence of this statement on the interleaver size.
It is therefore trivial to use a constituent encoder which maximizes the output Hamming

weight of completed detours of information weight two. The detours that cause the ex-

pected value of the free distance now have a larger output weight, so that this expected
value increases. Compared to a non-optimal constituent encoder, this encoder shifts the

codewords at the 'low weight end' of the spectrum to higher weights.

53

54 5. IMPROVEMENTS FOR TURBO CODES.

L

The search for a constituent encoder that maximizes the output weight for completed

detours with information weight two, intuitively leads to maximum cycle length encoders,

as will be illustrated in an example. The cycle length of an encoder is the period of the

output sequence when the input sequence consists of a single one followed by zeros.

Consider a (2, 1, 4) recursive systematic convolutional code with generators (37, 21). When

the sequence 1000... is encoded, the output sequences are 1 00000 00000... for the sys-

tematic output and 1 10010 10010... for the parity bits. The cycle length 5 can be

recognized in the output sequence. When these output sequences are serialised, the result

is the first basis vector of the code:

ii 0100000100 0100000100...

This vector is periodic: it contains the periodic sequence 0100000100. The other basis
vectors can be found as described in Section 2.6.3. Because the encoder is time-invariant,

they can be obtained by shifting the sequence above.
The output weight produced by the input sequence 100001 can now be found by adding

the corresponding basis vectors:

11 0100000100 0100000100 0100000100...

+ O0 0000000011 0100000100 0100000100...

= II 0100000111 0000000000 0000000000...

The output weight is six. When the sum of two basis vectors for a recursive convolutional

encoder produces a finite output weight, the input sequence corresponding to these vectors

causes a completed detour of information weight two in the trellis. Note that in order to

obtain a finite output weight, the two basis vectors have to be shifted by a multiple of the

cycle length. The basis vectors corresponding to the sequence 100001 are shifted by one

cycle length. Each additional shift of the basis vectors over one cycle length results in an

additional output weight of two.

Now consider a (2, 1, 4) recursive systematic convolutional code with generators (23, 35).

The first basis vector is:

Ii 010100000001000001010001000101 010100000001000001010001000101..-

It contains the periodic part 01010000000100000101000100010. The cycle length is 15,

which is the maximum cycle length for memory 4 encoders. The basis vectors correspond-

ing to the input sequence 1000000000000001 are shifted by one cycle length. Therefore this

input sequence causes a completed detour in the trellis of the encoder with information

weight two. Again, the output weight can be calculated by adding the corresponding basis

vectors:

II 010100000001000001010001000101 010100000001000001010001000101-.-

+ O0 000000000000000000000000000011 010100000001000001010001000101-._

= Ii 010100000001000001010001000110 000000000000000000000000000000.--

5. IMPROVEMENTS FOR TURBO CODES. 55

10 -'j

10 "2

10 -,_

n--

10 -4

104

10"

I

; i i i
0.5 1 1.5 2

Eb/No (dB)

2.5

Figure 5.1: The performance of two Turbo Codes with pseudorandom interleaver of size

400 and puncturing pattern as defined in [1]. One Turbo Code has (37,21) constituent

encoders, the other (23,35) constituent encoders.

The output weight is ten. Each additional shift of the basis vectors over one cycle length

results in an additional output weight of eight.

The maximum cycle length code produces more output weight for completed detours of

information weight two. The reason is intuitively clear: For the encoder with larger cycle

length, the basis vectors have a larger period so that their repeated part can contain more

ones. It is the weight of the repeated part of the basis vectors that determines the output

weight of the sum of two basis vectors that are shifted over multiple cycle lengths.

It would be difficult to prove that maximum cycle length encoders are always optimal:

the interleaver size has to be large enough so that information sequences with weight two

are likely to determine the free distance. Note that also the puncturing of the output has

to be taken into account. Moreover, the proposed method only optimizes the low weight

end of the spectrum. This causes the error floor to shift down, but does not change the

performance at low signal to noise ratios. This is illustrated in Figure 5.1.

Finally, it needs to be mentioned that Robertson proposed the use of the (23, 35)

generators instead of the (37, 21) generators in [31. Now theoretical results have been

found that explain why the maximum cycle length encoder is better.

5.3 Interleaver design.

The second way to improve a Turbo Code's performance is by optimizing the interleaver.

A method for interleaver optimization has been proposed by Robertson in [3]. This method

optimizes the interleaver for the free distance. The method works as follows:

5. IMPROVEI_ENTS FOR TURBO CODES. 57

100 •

10 -I

10<

mm10_
m

10_

104

10'

4r_ I + N_pt_nizeO.

I i I I I I

0.5 1 1.5 2 2.5 3
Eb/No (dB)

3.5

Figure 5.2: The performance of two Turbo Codes with constituent encoders and puncturing

pattern as in [1I. The interleaver size is 400. One code has an optimized interleaver, the

other code a pseudorandom interleaver.

Chapter 6

The Relation Between TURBO

Codes and Product Codes.

When Turbo Codes were first introduced, a few publications suggested that Turbo Codes

obtain their performance in a similar way as product codes, see [10 I. However, there are
several facts that contradict this theory.

The encoders for Turbo Codes and product codes contain the same components: two

constituent encoders and an interleaver. The difference lies in the interconnection of these

components. In the Turbo encoder, there is a parallel concatenation of the constituent

encoders as opposed to a serial concatenation for the product encoder. Therefore, an

information sequence is interleaved for the Turbo Code, and no code sequence as is the

case for product codes: The second constituent encoder of a Turbo encoder does not

encode the parity bits produced by the first constituent encoder. However, encoding the

parity bits of the first constituent encoder is crucial to the performance of product codes.

A second important difference lies in the aim of the coding schemes. The aim of building

a product code is to obtain a code with a high f_ee distance. This code is then used

at moderate and high signal to noise ratios (SNR) where the f_ee distance dominates

the performance. For Turbo Codes which are used at low SNR, the free distance is just
one element that determines the performance. As the SNR decreases, more terms of the

distance spectrum influence the performance of the code.

An interesting question remains to be solved. For a product code, increasing the interleaver

size does not increase the free distance. Is it possible to keep increasing the free distance

by increasing the interleaver size for a Turbo Code with given constituent encoders and

puncturing pattern? If not, what is the maximum free distance that can be reached, and

what effect prohibits the further increase?
It can be concluded that Turbo Codes and product codes are two fundamentally different

coding schemes.

59

Chapter 7

! _

Conclusions.

In Chapter 2, an algorithm was developed to calculate the free distance of a Turbo Code.

The algorithm was applied to a Turbo Code with a 64K pseudorandom interleaver and to
a Turbo Code with a 120 × 120 rectangular interleaver. The results led to the following

conclusion:

The error floor is caused by the free distance asymptote of the code. In case the free

distance is low, the free distance asymptote has a small slope at low signal to noise ratios:

the error floor looks flat. A turbo Code can have a small free distance and still show a

good performance when the number of free distance codewords is small relative to the
interleaver size.

In Chapter 3, the method of random interleaving was corrected to include incompleted

detours, and extended to punctured Turbo Codes. Using random interleaving, it was de-

rived that every term of the distance spectrum of the average Turbo Code (averaged over

all interleavers of a given size) converges to a finite value as the interleaver size increases.

This has the following consequences:
The number of free distance codewords for the average Turbo Code converges to a finite

value as the interleaver size increases, while the free distance stays constant. Therefore,

the error floor is shifted down as the interleaver size increases.

The spectrum for the average Turbo Code shows the effect of 'spectral thinning'. 'Spectral

thinning' can explain the fact that for Turbo Codes with larger interleavers, the error floor

dominates the performance down to smaller signal to noise ratios.

According to the theory developed in Section 3.7, the performance of Turbo Codes ap-

proaches the Shannon limit as the interleaver size increases.

In Chapter 4, the decoding complexity of Turbo Codes is reviewed and compared to

the decoding complexity of convolutional codes with Viterbi decoders. The decoding com-

plexity was defined as the number of operations required to decode one information bit.

For the Turbo Code, the decoding complexity is only determined by the memory size
of the constituent encoders. As the interleaver size increases and the performance im-

proves, the decoding complexity for the Turbo Code stays constant. However, improving

the performance of a convolutional code simultaneously increases the decoding complexity.

61

62 CHAPTER Z. CONCLUSIONS.

In Chapter 5, constituent encoder selection and interleaver design are addressed. The

proposed methods only lower the error floor, but have no influence on the performance at

low sigal to noise ratios. The performance of Turbo Codes with maximum cycle length

constituent encoders is explained.

In Chapter 6, Turbo Codes are compared to product codes. These two coding schemes

are fundamentally different.

Bibliography

°

[1] Claude Berrou, Alain Glavieux and Punya Thitimajshima, Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo Codes (1)., in Proceedings of ICC'93, Geneva,

Switzerland, May 1993.

[2] Claude Berrou and Main Glavieux, Turbo Codes: general principles and applications.,

in Proceedings of 6th Tirrenia International Workshop on Digital Communications,

Tirrenia, Italy, September 1993.

[3] Patrick Robertson, Illuminating the Structure o£ Code and Decoder of Para31e1 Con-
catenated Recursive Systematic (Turbo) Codes., in Proceedings of GLOBECOM '94,

volume 3, pages 1298-1303, San Francisco, California, November 1994.

[4] L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, Optima3 Decoding of Linear Codes

for Minimizing Symbol Error Rate., IEEE Transactions on Information Theory, pages

284-287, March 1974.

[5] J.D. Andersen, The TURBO Coding Scheme., Report IT-146, Technical University of

Denmark, June 1994.

[6[J. Hagenauer and L. Papke, Decoding 'TURBO'-codes with the soz2 output Viterbi

algorithm (SOVA)., Proc. 1994 IEEE Int. Sym. Inform. Theory, Trondheim, Norway,

page 164, 1994.

[71 S. Benedetto and G. Montorsi, Performance evaluation of turbo-codes., Electronics

Letters, Vol. 31, No. 3, page 163, 2nd February 1995.

[8[S. Benedetto and G. Montorsi, Average performance of parallel concatenated block
codes., Electronics Letters, Vol. 31, No. 3, page 156, 2nd February 1995.

[9] S. Benedetto and G. Montorsi, Unve//ing turbo codes: some results on para31el concate-

nated coding schemes., Dipartimento di Elettronica, Pohtecnico di Torino., 27 January

1995.

[10] A.S. Barbulescu and S.S. Pietrobon, Interleaver design for turbo codes., Electronics

Letters, Vol. 30, No. 25, page 2107, 8th December 1994.

[11] A.S. Barbulescu and S.S. Pietrobon, Terminating the trellis of turbo-codes in the

same state., Electronics Letters, Vol. 31, No. 1, page 22, 5th January 1995.

63

L_.

64 BIBLIOGRAPHY

[121A.S.Barbulescu and S.S.Pietrobon,Rate compatible turbo codes.,ElectronicsLet-

ters,VoL 31,No. 7,page 535,30th March 1995.

[131P. Jung, Novel low complex/tydecoder forturbo-codes.,ElectronicsLetters,Vol.31,

No. 2,page 86, 19th January 1995.

[14]P. Jung and M. Nasshan, Dependence ofthe errorperformance of turbo-codeson the

interleaverstructureinshortframe txansmissionsystems.,ElectronicsLetters,Vol.30,

No. 4,page 287,17th February 1994.

[151O. Joerssenand H. Meyr, Term/hating the trel/i_of turbo-codes.,ElectronicsLetters,

Vol.30, No. 16,page 1285,4th August 1994.

[16]James L. Massey, Applied DigitalInformationTheory If,Lecture Notes,ETH, 1995.

[17_Peter Elias,Error-FreeCoding.,IRE Trans.Inform. Theory, vol.PGIT-4,pp. 29-37,

September 1954.

[181 Dieter Arnold and Guido Meyerhans, The Realisation of the Turbo-Coding System.,

ETH, 14th July 1995.

[19l S. Dolinar, A new code for Galileo., TDA Progress Report,pp. 83-96, January-March

1988.

